Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach

Abstract

Mechanisms of progression of chronic renal diseases, a major healthcare burden, are poorly understood. Angiotensin II (AngII), the major renin-angiotensin system effector, is known to be involved in renal deterioration, but the molecular pathways are still unknown. Here, we show that mice overexpressing a dominant negative isoform of epidermal growth factor receptor (EGFR) were protected from renal lesions during chronic AngII infusion. Transforming growth factor-α (TGF-α) and its sheddase, TACE (also known as ADAM17), were induced by AngII treatment, TACE was redistributed to apical membranes and EGFR was phosphorylated. AngII-induced lesions were substantially reduced in mice lacking TGF-α or in mice given a specific TACE inhibitor. Pharmacologic inhibition of AngII prevented TGF-α and TACE accumulation as well as renal lesions after nephron reduction. These findings indicate a crucial role for AngII-dependent EGFR transactivation in renal deterioration and identify in TACE inhibitors a new therapeutic strategy for preventing progression of chronic renal diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overexpression of a dominant negative isoform of EGFR prevents lesion development in AngII-treated mice.
Figure 2: AngII stimulates TGF-α shedding and MAP kinase phosphorylation in GN5 cells.
Figure 3: TGF-α is increased and essential for AngII-induced renal damage.
Figure 4: TACE activation is crucial for AngII-induced TGF-α overexpression in lesion development.
Figure 5: AngII-induced EGFR phosphorylation is abolished by EGFR, TGF-α or TACE inhibition in mice.
Figure 6: Inhibition of AngII signaling pathway attenuates development of lesions and abrogates overexpression of TGF-α and TACE after nephron reduction.

Similar content being viewed by others

References

  1. Hostetter, T.H. Progression of renal disease and renal hypertrophy. Annu. Rev. Physiol. 57, 263–278 (1995).

    Article  CAS  Google Scholar 

  2. Lafayette, R.A., Mayer, G., Park, S.K. & Meyer, T.W. Angiotensin II receptor blockade limits glomerular injury in rats with reduced renal mass. J. Clin. Invest. 90, 766–771 (1992).

    Article  CAS  Google Scholar 

  3. Lewis, E.J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article  CAS  Google Scholar 

  4. Pei, Y., Scholey, J., Thai, K., Suzuki, M. & Cattran, D. Association of angiotensinogen gene T235 variant with progression of immunoglobin A nephropathy in Caucasian patients. J. Clin. Invest. 100, 814–820 (1997).

    Article  CAS  Google Scholar 

  5. Brewster, U.C. & Perazella, M.A. The renin-angiotensin-aldosterone system and the kidney: effects on kidney disease. Am. J. Med. 116, 263–272 (2004).

    Article  CAS  Google Scholar 

  6. Ardaillou, R. Angiotensin II receptors. J. Am. Soc. Nephrol. 10 Suppl. 11, S30–S39 (1999).

    CAS  PubMed  Google Scholar 

  7. Siragy, H.M. AT1 and AT2 receptor in the kidney: role in health and disease. Semin. Nephrol. 24, 93–100 (2004).

    Article  CAS  Google Scholar 

  8. de Gasparo, M., Catt, K.J., Inagami, T., Wright, J.W. & Unger, T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev. 52, 415–472 (2000).

    CAS  PubMed  Google Scholar 

  9. Eguchi, S. & Inagami, T. Signal transduction of angiotensin II type 1 receptor through receptor tyrosine kinase. Regul. Pept. 91, 13–20 (2000).

    Article  CAS  Google Scholar 

  10. Bokemeyer, D., Schmitz, U. & Kramer, H.J. Angiotensin II-induced growth of vascular smooth muscle cells requires an Src-dependent activation of the epidermal growth factor receptor. Kidney Int. 58, 549–558 (2000).

    Article  CAS  Google Scholar 

  11. Eguchi, S. et al. Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J. Biol. Chem. 273, 8890–8896 (1998).

    Article  CAS  Google Scholar 

  12. Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888 (1999).

    Article  CAS  Google Scholar 

  13. Harris, R.C., Chung, E. & Coffey, R.J. EGF receptor ligands. Exp. Cell Res. 284, 2–13 (2003).

    Article  CAS  Google Scholar 

  14. Nouwen, E.J. & De Broe, M.E. EGF and TGF-alpha in the human kidney: identification of octopal cells in the collecting duct. Kidney Int. 45, 1510–1521 (1994).

    Article  CAS  Google Scholar 

  15. Breyer, M.D., Redha, R. & Breyer, J.A. Segmental distribution of epidermal growth factor binding sites in rabbit nephron. Am. J. Physiol. 259, F553–F558 (1990).

    CAS  PubMed  Google Scholar 

  16. Norman, J. et al. EGF-induced mitogenesis in proximal tubular cells: potentiation by angiotensin II. Am. J. Physiol. 253, F299–F309 (1987).

    CAS  PubMed  Google Scholar 

  17. Okada, H., Danoff, T.M., Kalluri, R. & Neilson, E.G. Early role of Fsp1 in epithelial-mesenchymal transformation. Am. J. Physiol. 273, F563–F574 (1997).

    Article  CAS  Google Scholar 

  18. Creely, J.J., DiMari, S.J., Howe, A.M., Hyde, C.P. & Haralson, M.A. Effects of epidermal growth factor on collagen synthesis by an epithelioid cell line derived from normal rat kidney. Am. J. Pathol. 136, 1247–1257 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Terzi, F., Burtin, M. & Friedlander, G. Early molecular mechanisms in the progression of renal failure: role of growth factors and protooncogenes. Kidney Int. Suppl. 65, S68–S73 (1998).

    CAS  PubMed  Google Scholar 

  20. Stocklin, E., Botteri, F. & Groner, B. An activated allele of the c-erbB-2 oncogene impairs kidney and lung function and causes early death of transgenic mice. J. Cell Biol. 122, 199–208 (1993).

    Article  CAS  Google Scholar 

  21. Terzi, F. et al. Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury. J. Clin. Invest. 106, 225–234 (2000).

    Article  CAS  Google Scholar 

  22. Richards, W.G. et al. Epidermal growth factor receptor activity mediates renal cyst formation in polycystic kidney disease. J. Clin. Invest. 101, 935–939 (1998).

    Article  CAS  Google Scholar 

  23. Sweeney, W.E., Chen, Y., Nakanishi, K., Frost, P. & Avner, E.D. Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor. Kidney Int. 57, 33–40 (2000).

    Article  CAS  Google Scholar 

  24. Francois, H. et al. Prevention of renal vascular and glomerular fibrosis by epidermal growth factor receptor inhibition. FASEB J. 18, 926–928 (2004).

    Article  CAS  Google Scholar 

  25. Schafer, B., Gschwind, A. & Ullrich, A. Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene 23, 991–999 (2004).

    Article  Google Scholar 

  26. Pillebout, E. et al. JunD protects against chronic kidney disease by regulating paracrine mitogens. J. Clin. Invest. 112, 843–852 (2003).

    Article  CAS  Google Scholar 

  27. Sunnarborg, S.W. et al. Tumor necrosis factor-alpha converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. J. Biol. Chem. 277, 12838–12845 (2002).

    Article  CAS  Google Scholar 

  28. Luetteke, N.C. et al. TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell 73, 263–278 (1993).

    Article  CAS  Google Scholar 

  29. Schlondorff, J., Becherer, J.D. & Blobel, C.P. Intracellular maturation and localization of the tumour necrosis factor alpha convertase (TACE). Biochem. J. 347, 131–138 (2000).

    Article  CAS  Google Scholar 

  30. Ivanyi, B. & Olsen, T.S. Immunohistochemical identification of tubular segments in percutaneous renal biopsies. Histochemistry 95, 351–356 (1991).

    Article  CAS  Google Scholar 

  31. Dell, K.M. et al. A novel inhibitor of tumor necrosis factor-alpha converting enzyme ameliorates polycystic kidney disease. Kidney Int. 60, 1240–1248 (2001).

    Article  CAS  Google Scholar 

  32. Anderson, S. Mechanisms of injury in progressive renal disease. Exp. Nephrol. 4 Suppl. 1, 34–40 (1996).

    CAS  PubMed  Google Scholar 

  33. Gschwind, A., Zwick, E., Prenzel, N., Leserer, M. & Ullrich, A. Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene 20, 1594–1600 (2001).

    Article  CAS  Google Scholar 

  34. Zoja, C., Benigni, A. & Remuzzi, G. Cellular responses to protein overload: key event in renal disease progression. Curr. Opin. Nephrol. Hypertens. 13, 31–37 (2004).

    Article  CAS  Google Scholar 

  35. Schafer, B., Marg, B., Gschwind, A. & Ullrich, A. Distinct ADAM metalloproteinases regulate G protein-coupled receptor-induced cell proliferation and survival. J. Biol. Chem. 279, 47929–47938 (2004).

    Article  Google Scholar 

  36. Earp, H.S. et al. Angiotensin II activates at least two tyrosine kinases in rat liver epithelial cells. Separation of the major calcium-regulated tyrosine kinase from p125FAK. J. Biol. Chem. 270, 28440–28447 (1995).

    Article  CAS  Google Scholar 

  37. Luetteke, N.C. et al. Characterization of high molecular weight transforming growth factor alpha produced by rat hepatocellular carcinoma cells. Biochemistry 27, 6487–6494 (1988).

    Article  CAS  Google Scholar 

  38. Aladib, W., Yoshida, H. & Sato, M. High molecular weight type-alpha transforming growth factor in the urine of patients with surgical bone wound involved in mandibular osteotomy. Bone Miner. 9, 59–70 (1990).

    Article  CAS  Google Scholar 

  39. Asakura, M. et al. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat. Med. 8, 35–40 (2002).

    Article  CAS  Google Scholar 

  40. Gschwind, A., Hart, S., Fischer, O.M. & Ullrich, A. TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. EMBO J. 22, 2411–2421 (2003).

    Article  CAS  Google Scholar 

  41. Black, R.A. Tumor necrosis factor-alpha converting enzyme. Int. J. Biochem. Cell Biol. 34, 1–5 (2002).

    Article  CAS  Google Scholar 

  42. Doedens, J.R. & Black, R.A. Stimulation-induced down-regulation of tumor necrosis factor-alpha converting enzyme. J. Biol. Chem. 275, 14598–14607 (2000).

    Article  CAS  Google Scholar 

  43. Sahin, U. et al. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J. Cell Biol. 164, 769–779 (2004).

    Article  CAS  Google Scholar 

  44. Lowden, D.A. et al. Renal cysts in transgenic mice expressing transforming growth factor-alpha. J. Lab. Clin. Med. 124, 386–394 (1994).

    CAS  PubMed  Google Scholar 

  45. Wong, R.W. et al. Overexpression of epidermal growth factor induced hypospermatogenesis in transgenic mice. J. Biol. Chem. 275, 18297–18301 (2000).

    Article  CAS  Google Scholar 

  46. Mackenzie, H.S., Ziai, F., Omer, S.A., Nadim, M.K. & Taal, M.W. Angiotensin receptor blockers in chronic renal disease: the promise of a bright clinical future. J. Am. Soc. Nephrol. 10 Suppl. 12, S283–S286 (1999).

    CAS  PubMed  Google Scholar 

  47. Navis, G., Faber, H.J., de Zeeuw, D. & de Jong, P.E. ACE inhibitors and the kidney. A risk-benefit assessment. Drug Saf. 15, 200–211 (1996).

    Article  CAS  Google Scholar 

  48. Laverman, G.D., de Zeeuw, D. & Navis, G. Between-patient differences in the renal response to renin-angiotensin system intervention: clue to optimising renoprotective therapy? J. Renin Angiotensin Aldosterone Syst. 3, 205–213 (2002).

    Article  CAS  Google Scholar 

  49. Terzi, F. et al. Reduction of renal mass is lethal in mice lacking vimentin. Role of endothelin-nitric oxide imbalance. J. Clin. Invest. 100, 1520–1528 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Le Corre, M. Muffat-Joly and Y. Xiong. We thank W. Russell and M. Stevenson for TGF-α RIA measurements and E. Esquivel, M. Pontoglio and D. Laouari for critical advice. We are grateful to Wyeth-Ayerst Research Laboratories and MSD Laboratories for WTACE2 and losartan, respectively. This work was supported by INSERM, Université René Descartes, Laboratoires de Recherches Physiologiques and Centre de Recherche Industrielle et Technique and by US National Institutes of Health/National Cancer Institute grants CA43793 and CA85410 (to D.C.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiola Terzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lautrette, A., Li, S., Alili, R. et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med 11, 867–874 (2005). https://doi.org/10.1038/nm1275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing