Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis

Abstract

Type 2 diabetes is a disorder of hyperglycemia resulting from failure of beta cells to produce adequate insulin to accommodate an increased metabolic demand. Here we show that regulation of mRNA translation through phosphorylation of eukaryotic initiation factor 2 (eIF2α) is essential to preserve the integrity of the endoplasmic reticulum (ER) and to increase insulin production to meet the demand imposed by a high-fat diet. Accumulation of unfolded proteins in the ER activates phosphorylation of eIF2α at Ser51 and inhibits translation. To elucidate the role of this pathway in beta-cell function we studied glucose homeostasis in Eif2s1tm1Rjk mutant mice, which have an alanine substitution at Ser51. Heterozygous (Eif2s1+/tm1Rjk) mice became obese and diabetic on a high-fat diet. Profound glucose intolerance resulted from reduced insulin secretion accompanied by abnormal distension of the ER lumen, defective trafficking of proinsulin, and a reduced number of insulin granules in beta cells. We propose that translational control couples insulin synthesis with folding capacity to maintain ER integrity and that this signal is essential to prevent diet-induced type 2 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HFD produces obesity in Eif2s1+/tm1Rjk mice.
Figure 2: Eif2s1+/tm1Rjk mice show glucose intolerance and a defect in phase 1 insulin secretion.
Figure 3: HFD reduces insulin secretion from perifused islets of Eif2s1+/tm1Rjk mice.
Figure 4: Beta cells of HFD-fed Eif2s1+/tm1Rjk animals have distended ER.
Figure 5: Combination of high fat and Eif2s1tm1Rjk mutation causes accumulation of proinsulin in the ER in beta cells.

Similar content being viewed by others

References

  1. Zimmet, P., Alberti, K.G. & Shaw, J. Global and societal implications of the diabetes epidemic. Nature 414, 782–787 (2001).

    Article  CAS  Google Scholar 

  2. Maechler, P. & Wollheim, C.B. Mitochondrial function in normal and diabetic beta-cells. Nature 414, 807–812 (2001).

    Article  CAS  Google Scholar 

  3. Hinke, S.A., Hellemans, K. & Schuit, F.C. Plasticity of the beta cell insulin secretory competence: preparing the pancreatic beta cell for the next meal. J. Physiol. (Lond.) 558, 369–380 (2004).

    Article  CAS  Google Scholar 

  4. Itoh, N. & Okamoto, H. Translational control of proinsulin synthesis by glucose. Nature 283, 100–102 (1980).

    Article  CAS  Google Scholar 

  5. Schuit, F.C. In't Veld, P.A. & Pipeleers, D.G. Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc. Natl Acad. Sci. USA 85, 3865–3869 (1988).

    Article  CAS  Google Scholar 

  6. Wicksteed, B. et al. Cooperativity between the preproinsulin mRNA untranslated regions is necessary for glucose-stimulated translation. J. Biol. Chem. 276, 22553–22558 (2001).

    Article  CAS  Google Scholar 

  7. Wicksteed, B., Alarcon, C., Briaud, I., Lingohr, M.K. & Rhodes, C.J. Glucose-induced translational control of proinsulin biosynthesis is proportional to preproinsulin mRNA levels in islet beta-cells but not regulated via a positive feedback of secreted insulin. J. Biol. Chem. 278, 42080–42090 (2003).

    Article  CAS  Google Scholar 

  8. Tillmar, L., Carlsson, C. & Welsh, N. Control of insulin mRNA stability in rat pancreatic islets. Regulatory role of a 3′-untranslated region pyrimidine-rich sequence. J. Biol. Chem. 277, 1099–1106 (2002).

    Article  CAS  Google Scholar 

  9. Knoch, K.P. et al. Polypyrimidine tract-binding protein promotes insulin secretory granule biogenesis. Nat. Cell Biol. 6, 207–214 (2004).

    Article  CAS  Google Scholar 

  10. Alarcon, C., Lincoln, B. & Rhodes, C.J. The biosynthesis of the subtilisin-related proprotein convertase PC3, but no that of the PC2 convertase, is regulated by glucose in parallel to proinsulin biosynthesis in rat pancreatic islets. J. Biol. Chem. 268, 4276–4280 (1993).

    CAS  PubMed  Google Scholar 

  11. Webb, G.C., Akbar, M.S., Zhao, C. & Steiner, D.F. Expression profiling of pancreatic beta cells: glucose regulation of secretory and metabolic pathway genes. Proc. Natl Acad. Sci. USA 97, 5773–5778 (2000).

    Article  CAS  Google Scholar 

  12. Dever, T.E. Gene-specific regulation by general translation factors. Cell 108, 545–556 (2002).

    Article  CAS  Google Scholar 

  13. Han, A.P. et al. Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J. 20, 6909–6918 (2001).

    Article  CAS  Google Scholar 

  14. Kaufman, R.J. Double-stranded RNA-activated protein kinase mediates virus-induced apoptosis: a new role for an old actor. Proc. Natl Acad. Sci. USA 96, 11693–11695 (1999).

    Article  CAS  Google Scholar 

  15. Dever, T.E. et al. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68, 585–596 (1992).

    Article  CAS  Google Scholar 

  16. Harding, H.P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999).

    Article  CAS  Google Scholar 

  17. Zhang, K. & Kaufman, R.J. Signaling the unfolded protein response from the endoplasmic reticulum. J. Biol. Chem. 279, 25935–25938 (2004).

    Article  CAS  Google Scholar 

  18. Kozutsumi, Y., Segal, M., Normington, K., Gething, M.J. & Sambrook, J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462–464 (1988).

    Article  CAS  Google Scholar 

  19. Dorner, A.J., Wasley, L.C. & Kaufman, R.J. Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J. Biol. Chem. 264, 20602–20607 (1989).

    CAS  PubMed  Google Scholar 

  20. Morris, J.A., Dorner, A.J., Edwards, C.A., Hendershot, L.M. & Kaufman, R.J. Immunoglobulin binding protein (BiP) function is required to protect cells from endoplasmic reticulum stress but is not required for the secretion of selective proteins. J. Biol. Chem. 272, 4327–4334 (1997).

    Article  CAS  Google Scholar 

  21. Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332 (2000).

    Article  CAS  Google Scholar 

  22. Delepine, M. et al. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat. Genet. 25, 406–409 (2000).

    Article  CAS  Google Scholar 

  23. Senee, V. et al. Wolcott-Rallison Syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity. Diabetes 53, 1876–1883 (2004).

    Article  CAS  Google Scholar 

  24. Harding, H.P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153–1163 (2001).

    Article  CAS  Google Scholar 

  25. Yang, Y.L. et al. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 14, 6095–6106 (1995).

    Article  CAS  Google Scholar 

  26. Zhang, P. et al. The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol. Cell. Biol. 22, 6681–6688 (2002).

    Article  CAS  Google Scholar 

  27. Scheuner, D. et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176 (2001).

    Article  CAS  Google Scholar 

  28. El-Haschimi, K., Pierroz, D.D., Hileman, S.M., Bjorbaek, C. & Flier, J.S. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Invest. 105, 1827–1832 (2000).

    Article  CAS  Google Scholar 

  29. Pelleymounter, M.A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995).

    Article  CAS  Google Scholar 

  30. Bachman, E.S. et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297, 843–845 (2002).

    Article  CAS  Google Scholar 

  31. Nakae, J. et al. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell 4, 119–129 (2003).

    Article  CAS  Google Scholar 

  32. Williams, B.R.G. Signal Integration via PKR. (Science's STKE, 2001).

  33. Flamez, D. et al. Mouse pancreatic beta-cells exhibit preserved glucose competence after disruption of the glucagon-like peptide-1 receptor gene. Diabetes 47, 646–652 (1998).

    Article  CAS  Google Scholar 

  34. Jorns, A., Munday, R., Tiedge, M. & Lenzen, S. Comparative toxicity of alloxan, N-alkylalloxans and ninhydrin to isolated pancreatic islets in vitro. J. Endocrinol. 155, 283–293 (1997).

    Article  CAS  Google Scholar 

  35. Bergsten, P., Grapengiesser, E., Gylfe, E., Tengholm, A. & Hellman, B. Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J. Biol. Chem. 269, 8749–8753 (1994).

    CAS  PubMed  Google Scholar 

  36. Gething, M.J. & Sambrook, J. Protein folding in the cell. Nature 355, 33–45 (1992).

    Article  CAS  Google Scholar 

  37. Lu, P.D. et al. Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO J. 23, 169–179 (2004).

    Article  CAS  Google Scholar 

  38. Yang, X. et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell 117, 387–398 (2004).

    Article  CAS  Google Scholar 

  39. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    Article  Google Scholar 

  40. Boyce, M. et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005).

    Article  CAS  Google Scholar 

  41. Lee, Y.K., Brewer, J.W., Hellman, R. & Hendershot, L.M. BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly. Mol. Biol. Cell 10, 2209–2219 (1999).

    Article  CAS  Google Scholar 

  42. Grimaldi, K.A., Hutton, J.C. & Siddle, K. Production and characterization of monoclonal antibodies to insulin secretory granule membranes. Biochem. J. 245, 557–566 (1987).

    Article  CAS  Google Scholar 

  43. Creemers, J.W. et al. Identification of a transferable sorting domain for the regulated pathway in the prohormone convertase PC2. J. Biol. Chem. 271, 25284–25291 (1996).

    Article  CAS  Google Scholar 

  44. Schuit, F.C., Kiekens, R. & Pipeleers, D.G. Measuring the balance between insulin synthesis and insulin release. Biochem. Biophys. Res. Commun. 178, 1182–1187 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Saltiel for scientific guidance and manuscript review. We thank O. MacDougald and K. Longo for their input in characterizing the obesity phenotype, including measurement of metabolic rates. We thank M. Pinter for technical assistance and her efforts in management of our mouse colony and diet studies. We also thank J. Mitchell for assistance with manuscript preparation. We thank D. Sorenson, S. Meshinchi and C. Edwards of the University of Michigan Microscopy and Image Analysis Lab and T. Pritchett of the Anatomical Pathology Department for technical and scientific contribution. This work was supported by US National Institutes of Health grant DK42394 (to R.J.K.) and grants from the Juvenile Diabetes Research Foundation (1-2002-801) and from the K.U. Leuven (grant GOA/2004/11) (to F.C.S.). J.C. is a postdoctoral fellow at the Flemish National Fund for Scientific Research (FWO-Vlaanderen). M.R. was supported by the US National Institute of General Medical Sciences (grant GM07767).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frans C Schuit or Randal J Kaufman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Heterozygous Eif2s1+/tm1Rjk HFD-fed animals exhibit macrovesicular liver steatosis. (PDF 800 kb)

Supplementary Fig. 2

Heterozygous Eif2s1+/tm1Rjk HFD-fed animals are obese, exhibit reduced metabolic rates and are diabetic. (PDF 175 kb)

Supplementary Fig. 3

Eif2s1+/tm1Rjk/Leprdb/db mice are more glucose intolerant than wild-type Eif2s1+/+/Leprdb/db mice. (PDF 45 kb)

Supplementary Fig. 4

Obesity does not correlate with glucose intolerance in heterozygous Eif2s1+/tm1Rjk HFD-fed animals. (PDF 39 kb)

Supplementary Methods (PDF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheuner, D., Mierde, D., Song, B. et al. Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nat Med 11, 757–764 (2005). https://doi.org/10.1038/nm1259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing