Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diverse compounds mimic Alzheimer disease–causing mutations by augmenting Aβ42 production

Abstract

Increased Aβ42 production has been linked to the development of Alzheimer disease. We now identify a number of compounds that raise Aβ42. Among the more potent Aβ42-raising agents identified are fenofibrate, an antilipidemic agent, and celecoxib, a COX-2–selective NSAID. Many COX-2–selective NSAIDs tested raised Aβ42, including multiple COX-2–selective derivatives of two Aβ42-lowering NSAIDs. Compounds devoid of COX activity and the endogenous isoprenoids FPP and GGPP also raised Aβ42. These compounds seem to target the γ-secretase complex, increasing γ-secretase–catalyzed production of Aβ42 in vitro. Short-term in vivo studies show that two Aβ42-raising compounds increase Aβ42 levels in the brains of mice. The elevations in Aβ42 by these compounds are comparable to the increases in Aβ42 induced by Alzheimer disease–causing mutations in the genes encoding amyloid β protein precursor and presenilins, raising the possibility that exogenous compounds or naturally occurring isoprenoids might increase Aβ42 production in humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dose–response curves of Aβ-altering compounds in H4 cells.
Figure 2: Immunoprecipitation–mass spectrometry studies of Aβ42-altering compounds.
Figure 3: Aβ42-raising agents directly alter γ-secretase activity.
Figure 4: Aβ42-elevating agents increase Aβ42 levels in the brain of Tg2576 mice.

Similar content being viewed by others

References

  1. Selkoe, D.J. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

    CAS  PubMed  Google Scholar 

  2. Golde, T.E., Eckman, C.B. & Younkin, S.G. Biochemical detection of Abeta isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer's disease. Biochim. Biophys. Acta 1502, 172–187 (2000).

    CAS  PubMed  Google Scholar 

  3. Younkin, S.G. The role of A beta 42 in Alzheimer's disease. J. Physiol. Paris 92, 289–292 (1998).

    CAS  PubMed  Google Scholar 

  4. Scheuner, D. et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat. Med. 2, 864–870 (1996).

    CAS  PubMed  Google Scholar 

  5. Duff, K. et al. Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713 (1996).

    CAS  PubMed  Google Scholar 

  6. Iijima, K. et al. Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: a potential model for Alzheimer's disease. Proc. Natl. Acad. Sci. USA 101, 6623–6628 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. McGowan, E. et al. Selective Overexpression of Abeta42, but not Abeta40, in the secretory pathway is sufficient for plaque deposition in mice. Abstr. Soc. Neurosci. 877.14 (2003).

  8. Eriksen, J.L. et al. NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. J. Clin. Invest. 112, 440–449 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414, 212–216 (2001).

    CAS  PubMed  Google Scholar 

  10. Weggen, S. et al. Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. J. Biol. Chem. 278, 31831–31837 (2003).

    CAS  PubMed  Google Scholar 

  11. Sagi, S.A., Weggen, S., Eriksen, J., Golde, T.E. & Koo, E.H. The non-cyclooxygenase targets of non-steroidal anti-inflammatory drugs, lipoxygenases, peroxisome proliferator-activated receptor, inhibitor of kappa B kinase, and NF kappa B, do not reduce amyloid beta 42 production. J. Biol. Chem. 278, 31825–31830 (2003).

    CAS  PubMed  Google Scholar 

  12. Takahashi, Y. et al. Sulindac sulfide is a noncompetitive gamma-secretase inhibitor that preferentially reduces Abeta 42 generation. J. Biol. Chem. 278, 18664–18670 (2003).

    CAS  PubMed  Google Scholar 

  13. Beher, D. et al. Selected non-steroidal anti-inflammatory drugs and their derivatives target gamma -secretase at a novel site-evidence for an allosteric mechanism. J. Biol. Chem. 279, 43419–43426 (2004).

    CAS  PubMed  Google Scholar 

  14. Lleo, A. et al. Nonsteroidal anti-inflammatory drugs lower Abeta42 and change presenilin 1 conformation. Nat. Med. 10, 1065–1066 (2004).

    CAS  PubMed  Google Scholar 

  15. Gebel, T., Arand, M. & Oesch, F. Induction of the peroxisome proliferator activated receptor by fenofibrate in rat liver. FEBS Lett. 309, 37–40 (1992).

    CAS  PubMed  Google Scholar 

  16. Kalgutkar, A.S., Marnett, A.B., Crews, B.C., Remmel, R.P. & Marnett, L.J. Ester and amide derivatives of the nonsteroidal antiinflammatory drug, indomethacin, as selective cyclooxygenase-2 inhibitors. J. Med. Chem. 43, 2860–2870 (2000).

    CAS  PubMed  Google Scholar 

  17. Kalgutkar, A.S. et al. Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: facile conversion of nonsteroidal antiinflammatory drugs to potent and highly selective COX-2 inhibitors. Proc. Natl. Acad. Sci. USA 97, 925–930 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou, Y. et al. Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science 302, 1215–1217 (2003).

    CAS  PubMed  Google Scholar 

  19. Miyata, K. et al. Rho-kinase is involved in macrophage-mediated formation of coronary vascular lesions in pigs in vivo. Arterioscler. Thromb. Vasc. Biol. 20, 2351–2358 (2000).

    CAS  PubMed  Google Scholar 

  20. Ren, X.D. & Schwartz, M.A. Determination of GTP loading on Rho. Methods Enzymol. 325, 264–272 (2000).

    CAS  PubMed  Google Scholar 

  21. Seiffert, D. et al. Presenilin-1 and -2 are molecular targets for gamma -secretase inhibitors. J. Biol. Chem. 275, 34086–34091 (2000).

    CAS  PubMed  Google Scholar 

  22. Najib, J. Fenofibrate in the treatment of dyslipidemia: a review of the data as they relate to the new suprabioavailable tablet formulation. Clin. Ther. 24, 2022–2050 (2002).

    CAS  PubMed  Google Scholar 

  23. Berger, J. et al. The four murine peroxisomal ABC-transporter genes differ in constitutive, inducible and developmental expression. Eur. J. Biochem. 265, 719–727 (1999).

    CAS  PubMed  Google Scholar 

  24. Gan, X. et al. Dual mechanisms of ABCA1 regulation by geranylgeranyl pyrophosphate. J. Biol. Chem. 276, 48702–48708 (2001).

    CAS  PubMed  Google Scholar 

  25. Magee, T. & Marshall, C. New insights into the interaction of Ras with the plasma membrane. Cell 98, 9–12 (1999).

    CAS  PubMed  Google Scholar 

  26. Wahrle, S. et al. Cholesterol-Dependent gamma-Secretase Activity in Buoyant Cholesterol- Rich Membrane Microdomains. Neurobiol. Dis. 9, 11–23 (2002).

    CAS  PubMed  Google Scholar 

  27. Vetrivel, K.S. et al. Association of gamma -secretase with lipid rafts in post-golgi and endosome membranes. J. Biol. Chem. 279, 44945–44954 (2004).

    CAS  PubMed  Google Scholar 

  28. Keller, R.K. Squalene synthase inhibition alters metabolism of nonsterols in rat liver. Biochim. Biophys. Acta 1303, 169–179 (1996).

    PubMed  Google Scholar 

  29. Liao, J.K. Isoprenoids as mediators of the biological effects of statins. J. Clin. Invest. 110, 285–288 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. del Real, G. et al. Statins inhibit HIV-1 infection by down-regulating Rho activity. J. Exp. Med. 200, 541–547 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G.G. & Siegel, G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3- methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol. 57, 1439–1443 (2000).

    CAS  PubMed  Google Scholar 

  32. Simons, M. et al. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. USA 95, 6460–6464 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Refolo, L.M. et al. A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiol. Dis. 8, 890–899 (2001).

    CAS  PubMed  Google Scholar 

  34. Akiyama, H. et al. Inflammation and Alzheimer's disease. Neurobiol. Aging 21, 383–421 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Qin, W. et al. Cyclooxygenase (COX)-2 and COX-1 potentiate beta-amyloid peptide generation through mechanisms that involve gamma-secretase activity. J. Biol. Chem. 278, 50970–50977 (2003).

    CAS  PubMed  Google Scholar 

  36. Xiang, Z. et al. Cyclooxygenase-2 promotes amyloid plaque deposition in a mouse model of Alzheimer's disease neuropathology. Gene Expr. 10, 271–278 (2002).

    CAS  PubMed  Google Scholar 

  37. Davies, N.M., McLachlan, A.J., Day, R.O. & Williams, K.M. Clinical pharmacokinetics and pharmacodynamics of celecoxib: a selective cyclo-oxygenase-2 inhibitor. Clin. Pharmacokinet. 38, 225–242 (2000).

    CAS  PubMed  Google Scholar 

  38. Martin, B.K., Meinert, C.L. & Breitner, J.C. Double placebo design in a prevention trial for Alzheimer's disease. Control Clin. Trials 23, 93–99 (2002).

    PubMed  Google Scholar 

  39. Koehne, C.H. & Dubois, R.N. COX-2 inhibition and colorectal cancer. Semin. Oncol. 31, 12–21 (2004).

    CAS  PubMed  Google Scholar 

  40. Kammerl, M.C., Debler, J., Riegger, G.A. & Kramer, B.K. COX-2 inhibitors and risk of heart failure. Lancet 364, 1486–1487; author reply 1487 (2004).

    PubMed  Google Scholar 

  41. Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    CAS  PubMed  Google Scholar 

  42. Murphy, M.P. et al. Presenilin 1 regulates pharmacologically distinct gamma -secretase activities. Implications for the role of presenilin in gamma -secretase cleavage. J. Biol. Chem. 275, 26277–26284 (2000).

    CAS  PubMed  Google Scholar 

  43. Wang, R., Sweeney, D., Gandy, S.E. & Sisodia, S.S. The profile of soluble amyloid beta protein in cultured cell media. Detection and quantification of amyloid beta protein and variants by immunoprecipitation-mass spectrometry. J. Biol. Chem. 271, 31894–31902 (1996).

    CAS  PubMed  Google Scholar 

  44. Anastasiadis, P.Z. et al. Inhibition of RhoA by p120 catenin. Nat. Cell Biol. 2, 637–644 (2000).

    CAS  PubMed  Google Scholar 

  45. McLendon, C. et al. Cell-free assays for γ-secretase activity. FASEB J. 14, 2383–2386 (2000).

    CAS  PubMed  Google Scholar 

  46. Hsiao, K. et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274, 99–102 (1996).

    CAS  PubMed  Google Scholar 

  47. Kawarabayashi, T. et al. Age-dependent changes in brain, CSF, and plasma amyloid protein in the Tg2576 transgenic mouse model of Alzheimer's disease. J. Neurosci. 21, 372–381 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Eckman, E.A., Watson, M., Marlow, L., Sambamurti, K. & Eckman, C.B. Alzheimer's disease beta-amyloid peptide is increased in mice deficient in endothelin-converting enzyme. J. Biol. Chem. 278, 2081–2084 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were funded by the US National Institutes of Health National Institute on Aging (P01 AG20206 to E.K. and T.G.). Additional resources from the Mayo Foundation provided by a gift from R. and C. Smith were used to support the Tg2576 mouse colony that provided the mice used in these studies. J.E. was supported by John Douglas French Foundation fellowship grant. S.S. was supported by a US National Institutes of Health training grant (T 32 AG00216). We thank L. Marnett, K. Zavitz and R. Slade for providing compounds; K. Jessing and J. Scott Patton for analyzing celecoxib levels; and S. Younkin, L. Younkin, D. Yaeger, B. Bone, T. Brehm-Gibson and C. Eckman for their assistance in developing anti-Aβ antibodies and novel Aβ ELISAs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd E Golde.

Ethics declarations

Competing interests

Edward H. Koo and Todd E.Golde are co-inventors on a patent application with claims pertaining to the use of Aβ42 lowering NSAIDs and NSAID derivatives in Alzheimer disease.

Supplementary information

Supplementary Fig. 1

Dose response of multiple COX-2 inhibitors compounds in H4 cells. (PDF 132 kb)

Supplementary Fig. 2

COX-2 selective derivatives of Indomethacin and Meclofenamic acid raise Aβ42. (PDF 133 kb)

Supplementary Fig. 3

Extended dose-response studies of fenofibrate, celecoxib, GGPP and FPP. (PDF 124 kb)

Supplementary Fig. 4

Effects of celecoxib, fenofibrate and GGPP on CTFγ production in vitro. (PDF 92 kb)

Supplementary Fig. 5

Distinct effects of fenofibrate, celecoxib and FT-1 on APP, sAPP CTFα and CTFβ levels in H4 cells. (PDF 122 kb)

Supplementary Fig. 6

Scatter plots of Aβ40 (x-axis) and Aβ42 (y-axis) levels of animals dosed with celecoxib and FT-1 at either 50 mg/kg/day (50) or 100 mg/kg/day (100). (PDF 121 kb)

Supplementary Table 1

Indomethacin derivatives (PDF 80 kb)

Supplementary Table 2

Meclofenamic acid derivatives (PDF 51 kb)

Supplementary Methods (PDF 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukar, T., Murphy, M., Eriksen, J. et al. Diverse compounds mimic Alzheimer disease–causing mutations by augmenting Aβ42 production. Nat Med 11, 545–550 (2005). https://doi.org/10.1038/nm1235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing