Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef

Abstract

Cytotoxic T-lymphocyte (CTL) responses to human immunodeficiency virus arise early after infection, but ultimately fail to prevent progression to AIDS. Human immunodeficiency virus may evade the CTL response by accumulating amino-acid replacements within CTL epitopes. We studied 10 CTL epitopes during the course of simian immunodeficiency virus disease progression in three related macaques. All 10 of these CTL epitopes accumulated amino-acid replacements and showed evidence of positive selection by the time the macaques died. Many of the amino-acid replacements in these epitopes reduced or eliminated major histocompatibility complex class I binding and/or CTL recognition. These findings strongly support the CTL 'escape' hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pedigree of an MHC-defined family of rhesus macaques.
Figure 2: Evolution of the plasma virus population in Nef from macaque D.
Figure 3: Evolution of the plasma virus population in Env from macaque D.
Figure 4: Analysis of sequences isolated from MHC-defined rhesus macaques at time of death.
Figure 5: Recognition of epitope variants by CTLs from macaques C, A and D.

Similar content being viewed by others

References

  1. Borrow, P., Lewicki, H., Hahn, B., Shaw, G. & Oldstone, M. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol. 68, 6103– 6110 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Koup, R. & Ho, D. Shutting down HIV. Nature 370, 416 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Yasutomi, Y., Reimann, K., Lord, C., Miller, M. & Letvin, N. Simian immunodeficiency virus-specific CD8+ lymphocyte response in acutely infected rhesus monkeys. J. Virol. 67, 1707–1711 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Reimann, K. et al. Immunopathogenic events in acute infection of rhesus monkeys with simian immunodeficiency virus of macaques. J. Virol. 68, 2362–2370 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ogg, G.S. et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 279, 2103– 2106 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Schmitz, J.E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857– 860 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Jin, X. et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med. 189, 991–998 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matano, T. et al. Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infections of rhesus macaques. J. Virol. 72 , 164–169 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Couillin, I. et al. Impaired cytotoxic T lymphocyte recognition due to genetic variations in the main immunogenic region of the human immunodeficiency virus 1 NEF protein. J. Exp. Med. 180, 1129– 34 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Goulder, P.J.R. et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nature Med. 3, 212–217 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. McMichael, A.J. & Phillips, R.E. Escape of human immunodeficiency virus from immune control. Annu. Rev. Immunol. 15, 271–296 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  12. Borrow, P. et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nature Med. 3, 205– 211 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Wolinsky, S.M. et al. Adaptive evolution of human immunodeficiency virus-type 1 during the natural course of infection. Science 272 , 537–542 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Koenig, S. et al. Transfer of HIV-1-specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nat. Med. 1, 330– 336 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Dai, L.C., West, K., Littaua, R., Takahashi, K. & Ennis, F.A. Mutation of human immunodeficiency virus type 1 at amino acid 585 on gp41 results in loss of killing by CD8+ A24-restricted cytotoxic T lymphocytes. J. Virol. 66, 3151 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Haas, G. et al. Dynamics of viral variants in HIV-1 Nef and specific cytotoxic T lymphocytes in vivo. J. Immunol. 157, 4212–4221 (1996).

    CAS  PubMed  Google Scholar 

  17. Mortara, L. et al. Selection of virus variants and emergence of virus escape mutants after immunization with an epitope vaccine. J. Virol. 72, 1403–1410 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Price, D.A. et al. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc. Natl. Acad. Sci. USA 94, 1890–1895 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balter, M. Modest Briton stirs up storm with views on role of CTLs. Science 280, 1860–1861 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  20. Brander, C. et al. Lack of strong immune selection pressure by the immunodominant, HLA-A*0201-restricted cytotoxic T lymphocyte response in chronic human immunodeficiency virus-1 infection. J. Clin. Invest. 101, 2559–2566 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dykhuizen, M. et al. Determinants of disease in the simian immunodeficiency virus-infected rhesus macaque: characterizing animals with low antibody responses and rapid progression. J. Gen. Virol. 79, 2461– 2467 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Pauza, C.D. et al. Pathogenesis of SIVmac251 after atraumatic inoculation of the rectal mucosa in rhesus monkeys. J. Med. Primatol. 22, 154–61 (1993).

    CAS  PubMed  Google Scholar 

  23. Coffin, J.M. HIV population dynamics in vivo: Implications for genetic variation, pathogenesis, and therapy. Science 267, 483–489 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molec. Biol. Evol. 3, 418–426 (1986).

    CAS  PubMed  Google Scholar 

  25. Hughes, A.L. & Nei, M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167–170 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. delGuercio, M.F. et al. Binding of a peptide antigen to multiple HLA alleles allows definition of an A2-like supertype. J. Immunol. 154 , 685–693 (1995).

    CAS  Google Scholar 

  27. Koup, R.A. et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68, 4650– 4655 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Walker, B.D. et al. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature 328, 345–348 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Koup, R.A. et al. Limiting dilution analysis of cytotoxic T lymphocytes to human immunodeficiency virus gag antigens in infected persons: In vitro quantitation of effector cell populations with p17 and p24 specificities. J. Exp. Med. 174, 1593–1600 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Carmichael, A., Jin, X., Sissons, P. & Borysiewicz, L. Quantitative analysis of the human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-1 infection: Differential CTL responses to HIV-1 and Epstein-Barr virus in late disease. J. Exp. Med. 177, 249–256 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Mellors, J.W. et al. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272, 1167– 1170 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. McMichael, A. T cell responses and viral escape. Cell 93, 673–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Trivedi, P. et al. Selective amplification of simian immunodeficiency virus genotypes after intrarectal inoculation of rhesus monkeys. J. Virol. 62, 7649–7653 (1994).

    Google Scholar 

  34. van Baalen, C.A. et al. Selective in vitro expansion of HLA class I-restricted HIV-1 gag-specific CD8+ T cells: Cytotoxic T-lymphocyte epitopes and precursor frequencies. AIDS 7, 781– 786 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Voss, G. et al. Human immunodeficiency virus type 1 envelope glycoprotein-specific cytotoxic T lymphocytes in simian-human immunodeficiency virus-infected rhesus monkeys. Virology 208, 770– 775 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Allen, T.M. et al. Characterization of the peptide-binding motif of a rhesus MHC class I molecule (Mamu-A*01) that binds an immunodominant CTL epitope from SIV. J. Immunol. 160, 6062– 6071 (1998).

    CAS  PubMed  Google Scholar 

  37. Greenwood, F., Hunter, W. & Glover, J. The preparation of 131I-labeled human growth hormone of high specific radioactivity. Biochem. J. 89, 114 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Smith for help in preparing this manuscript and B. Becker for help with illustration. We thank J. Scheffler for initially identifying this family, and J. Mitchen, M. Dykhuizen and L. Acker for infecting the macaques, collecting blood and monitoring disease progression. We also thank J. Malter, S. Wolinsky and G. Watkins for critical review. This work was supported by grants from the National Institutes of Health (AI32426, AI42641, and AI41913 to D.I.W.; AI36643 to C.D.P.; AI15486 to R.D.; GM34940 to A.L.H.; AI38081 to Epimmune; and RR00167 to the Wisconsin Regional Primate Research Center). D.I.W. is an Elizabeth Glaser Scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David I. Watkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, D., O'Connor, D., Jing, P. et al. Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef. Nat Med 5, 1270–1276 (1999). https://doi.org/10.1038/15224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing