Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: Implications for clinical trials

Abstract

The long-term consequences of adenovirus-mediated conditional cytotoxic gene therapy for gliomas remain uncharacterized. We report here detection of active brain inflammation 3 months after successful inhibition of syngeneic glioma growth. The inflammatory infiltrate consisted of activated macrophages/microglia and astrocytes, and T lymphocytes positive for leucosyalin, CD3 and CD8, and included secondary demyelination. We detected strong widespread herpes simplex virus 1 thymidine kinase immunoreactivity and vector genomes throughout large areas of the brain. Thus, patient evaluation and the design of clinical trials in ongoing and future gene therapy for brain glioblastoma must address not only tumor-killing efficiency, but also long-term active brain inflammation, loss of myelin fibers and persistent transgene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Survival analysis.
Figure 2: Brain inflammation in long-term survivors of suicide-gene therapy.
Figure 3: Loss of myelinated fibers, HSV-1-TK immunoreactivity and macrophage and lymphocyte infiltration of perivascular cuffs.
Figure 4: Persistence of HSV-1-TK within neurons in long-term survivors of suicide-gene therapy.
Figure 5: PCR analysis of brain sections from long-term survivors of suicide-gene therapy.
Figure 6: Immune-mediated elimination of CNS-1 cells does not lead to chronic persistent infiltration of CD4+ or CD8+ T cells.
Figure 7: Injection of RAd-128 followed by ganciclovir leads to chronic sustained infiltration of CD8+ T cells.

Similar content being viewed by others

References

  1. Izquierdo, M. et al. Human malignant brain tumour response to herpes simplex tymidine kinase (HSVtk)/ganciclovir gene therapy. Gene Therapy 3, 491–495 (1996).

    CAS  PubMed  Google Scholar 

  2. Ram, Z. et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nature Medicine 3, 1354–1361 (1997).

    Article  CAS  Google Scholar 

  3. Klatzmann, D. et al. A phase I/II study of herpes simplex virus type 1 thymidine kinase "suicide" gene therapy for recurrent glioblastoma. Hum. Gene Ther. 9, 2595–2604 (1998).

    CAS  PubMed  Google Scholar 

  4. Eck, S.L. et al. Treatment of advanced CNS malignancies with the recombinant adenovirus H5.010RSVTK: a phase I trial. Hum. Gene Ther. 7, 1465–1482 (1996).

    Article  CAS  Google Scholar 

  5. Freeman, S. et al. The "bystander effect": tumour regression when a fraction of the tumour mass is genetically modified. Cancer Res. 53, 5274–5283 (1993).

    CAS  PubMed  Google Scholar 

  6. Freeman, S.M., Ramesh, R. & Marrogi, A.J. Immune system in suicide gene therapy. Lancet 349, 2–3 ( 1997).

    Article  CAS  Google Scholar 

  7. Gagandeep, S. et al. Prodrug-activated gene therapy: involvement of an immunological component in the "bystander effect". Cancer Gene Ther. 3, 83–88 (1996).

    CAS  PubMed  Google Scholar 

  8. Barba, D., Hardin, J., Sadelain, M. & Gage, F. Development of anti-tumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc. Natl. Acad. Sci. USA 91, 4348 –4352 (1994).

    Article  CAS  Google Scholar 

  9. Beck, C., Cayeux, S., Lupton, S., Dorken, B. & Blankenstein, T. The thymidine kinase/ganciclovir-mediated "suicide" effect is variable in different tumour cells. Hum. Gene Ther. 6, 1525–1530 (1995).

    Article  CAS  Google Scholar 

  10. Chen, S.-H., Shine, H.D., Goodman, J., Grossman, R. & Woo, S.L.C. Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc. Natl. Acad. Sci. USA 91, 3054–3057 (1994).

    Article  CAS  Google Scholar 

  11. Culver, K. et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256, 1550–1552 (1992).

    Article  CAS  Google Scholar 

  12. Ezzeddine, Z. et al. Selective killing of glioma cells in culture and in vivo by retrovirus transfer of the herpes simplex virus thymidine kinase gene. New Biologist 3, 608–614 (1991).

    CAS  PubMed  Google Scholar 

  13. Izquierdo, M. et al. Long-term rat survival after malignant brain tumor regression by retroviral gene therapy. Gene Ther. 2, 66–69 (1995).

    CAS  PubMed  Google Scholar 

  14. Maron, A. et al. Gene therapy of rat C6 glioma using adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene: long-term follow-up by magnetic resonance imaging. Gene Therapy 3, 315–322 (1996).

    CAS  PubMed  Google Scholar 

  15. Perez-Cruet, M. et al. Adenovirus-mediated gene therapy of experimental gliomas. J. Neurosci. Res. 39, 506– 511 (1994).

    Article  CAS  Google Scholar 

  16. Ram, Z. et al. The effect of thymidine kinase transduction and ganciclovir therapy on tumor vasculature and growth of 9L giomas in rats. J. Neurosurg. 81, 256–260 ( 1994).

    Article  CAS  Google Scholar 

  17. Ambar, B.B. et al. Treatment of experimental glioma by administration of adenoviral vectors expressing Fas ligand. Hum. Gene Ther. 10, 1641–1648 (1999).

    Article  CAS  Google Scholar 

  18. Byrnes, A.P., Rusby, J.E., Wood, M.J.A. & Charlton, H.M. Adenovirus gene transfer causes inflammation in the brain. Neuroscience 66, 1015–1024 ( 1995).

    Article  CAS  Google Scholar 

  19. Byrnes, A.P., MacLaren, R.E. & Charlton, H.M. Immunological instability of persistent adenovirus vectors in the brain: peripheral exposure to vector leads to renewed inflammation, reduced gene expression, and demyelination. J. Neurosci. 16, 3045–3055 (1996).

    Article  CAS  Google Scholar 

  20. Cartmell, T. et al. IL-1 mediates a rapid inflammatory response following adenoviral vector delivery into the brain. J. Neurosci. 19, 1517–1523 (1999).

    Article  CAS  Google Scholar 

  21. Geddes, B.J., Harding, T.C., Lightman, S.L. & Uney, J.B. Long-term gene therapy in the CNS: reversal of hypothalamic diabetes insipidus in the Brattleboro rat by using an adenovirus expressing arginine vasopressin. Nature Med. 3, 1402–1404 (1997).

    Article  CAS  Google Scholar 

  22. Ghodsi, A. et al. Extensive β-glucuronidase activity in murine central nervous system after adenovirus-mediated gene transfer to brain. Hum. Gene Ther. 9, 2331–2340 (1998).

    Article  CAS  Google Scholar 

  23. Blomer, U., Naldini, L., Kafri, T., Trono, D., Verma, I.M. & Gage, F.H. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol 71, 6641–6649 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hermens, W.T. & Verhaagen, J. Suppression of inflammation by dexamethasone prolongs adenoviral vector-mediated transgene expression in the facial nucleus of the rat. Brain Res. Bull. 47,133–40 (1998).

    Article  CAS  Google Scholar 

  25. Kruse, C.A. et al. A rat glioma model, CNS-1, with invasive characteristics similar to those of human gliomas: a comparison to 9L gliosarcoma. J. Neurooncol. 22, 191–200 ( 1994).

    Article  CAS  Google Scholar 

  26. Salomon, B et al. A truncated herpes simplex virus thymidine kinase phosphorylates thymidine and nucleoside analogs and does not cause sterility in transgenic mice. Mol. Cell. Biol. 15, 5322– 5328 (1995).

    Article  CAS  Google Scholar 

  27. Dewey, R.A. et al. Adenoviral-mediated suicide gene therapy using the CNS-1 rat glioma model. Abstr. Soc. Neurosci. Part 2 2165, number 859.9 (1998).

  28. Goodman, J. et al. Adenoviral-mediated thymidine kinase gene transfer into the primate brain followed by systemic ganciclovir: pathologic, radiologic, and molecular studies. Hum. Gene Ther. 7, 1241 –1250 (1996).

    Article  CAS  Google Scholar 

  29. Smith, J. et al. Intracranial administration of adenovirus expressing HSV-TK in combination with ganciclovir produces a dose-dependent, self-limiting inflammatory response. Hum. Gene Ther. 8, 943– 954 (1997).

    Article  CAS  Google Scholar 

  30. Puumalainen, A. et al. Beta-galactosidase gene transfer to human malignant glioma in vivo using replication-deficient retroviruses and adenoviruses. Hum. Gene Ther. 9, 1769–1774 (1998).

    Article  CAS  Google Scholar 

  31. Klinkert, W.E. et al. TNF-alpha receptor fusion protein prevents experimental auto-immune encephalomyelitis and demyelination in Lewis rats: an overview. J. Neuroimmunol. 72, 163–168 (1997).

    Article  CAS  Google Scholar 

  32. Weller, M. & Fontana, A. The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-beta, T-cell apoptosis, and the immune privilege of the brain. Brain Res. Brain Res. Rev. 21, 128–151 (1995).

    Article  CAS  Google Scholar 

  33. Gratas et al. Fas ligand expression in glioblastoma cell lines and primary astrocytic brain tumours. Brain Pathol. 7, 863– 869 (1997).

    Article  CAS  Google Scholar 

  34. Easton, R.M., Johnson, E.M. & Creedon, D.J. Analysis of events leading to neuronal death after infection with E1-deficient adenoviral vectors. Mol. Cell. Neurosci. 11, 334–347 ( 1998).

    Article  CAS  Google Scholar 

  35. Shering, A.F. & Lowenstein, P.R. Neocortex provides direct synaptic input to interstitial neurons of the intermediate zone of kittens and white matter of cats: a light and electron microscopic study. J. Comp. Neurol. 347, 433–443 ( 1994).

    Article  CAS  Google Scholar 

  36. Morelli, A. et al. Reduced systemic toxicity of recombinant adenovirus vectors expressing the apoptotic molecule Fas-L driven by cell-type specific promoters. J. Gen. Virol. 80, 571– 583 (1999).

    Article  CAS  Google Scholar 

  37. Shering, A.F. et al. Cell-type specific expression in brain cell cultures from a short human cytomegalovirus major immediate early promoter depends on whether it is inserted into herpesvirus or adenovirus vectors. J. Gen. Virol. 78, 445–459 ( 1997).

    Article  CAS  Google Scholar 

  38. Cotten, M., Baker, A., Saltik, M., Wagner, E. & Buschle, M. Lipopopysaccharide is a frequent contamination of plasmid DNA preparations and can be toxic to primary human cells in the presence of adenovirus. Gene Ther. 1, 239– 246 (1994).

    CAS  PubMed  Google Scholar 

  39. Hauss-Wgrzyniak, B., Lukovic, L., Bigaud, M. & Stoeckel, M.E. Brain inflammatory response induced by intracerebroventricular infusion of lipopolysaccharide: an immunohistochemical study. Brain Res. 794, 211–224 (1998).

    Article  Google Scholar 

  40. Dion, D. L., Fang, J. & Garver Jr., R. I. Supernatant rescue assay vs. polymerase chain reaction for detection of wild type adenovirus-contaminating recombinant adenovirus stocks. J. Virol. Meth. 56:99 –107 (1996).

    Article  CAS  Google Scholar 

  41. Lowenstein, P.R., Shering, A.F., James, J.L., Cohen, P. & McDougall, L. The distribution of protein phosphatase inhibitor, Inhibitor 1, in the neocortex of the cat, ferret, and rat: a light and electron microscopical study. Brain Res. 676, 80–92 (1995).

    Article  CAS  Google Scholar 

  42. Wolff, SD & Balaban, RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn. Reson. Med. 10, 135–144, 1989.

    Article  CAS  Google Scholar 

  43. Wolff, S.D. & Balaban, R.S. Magnetization transfer imaging: practical aspects and clinical applications. Radiology 192, 593–599, 1994.

    Article  CAS  Google Scholar 

  44. Kurki, T., Lundbom, N., Kalimo, H. & Valtonen, S. MR classification of brain gliomas: value of magnetization transfer and conventional imaging. Magn. Reson. Imaging 13, 501– 511 (1995).

    Article  CAS  Google Scholar 

  45. Lee, K.H. & Contache, D.A. Detection of β-actin mRNA by RT-PCR in normal and regenerating chicken cochleae. Hearing Res. 87, 9–15 ( 1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The technical assistance of T. Maleniak and the secretarial help of Ros Poulton, are acknowledged. We also thank I. Miller and T. Bentley from the Electron Microscopy, Photography and Graphics Unit (School of Biological Sciences, University of Manchester) for their help and advice with the final production of the figures. Comments on the work and manuscript by D. Mann, and P. Kingston are acknowledged. This work was supported by Cancer Research Campaign, UK (project grant number SP2332/0101 to P.R.L. and M.G.C.), and European Community Biomed II grant to P.R.L., M.G.C. and D.K. (Contract number BMH4-CT96-1436). T.D.S. is an Action Research Training Fellow, and P.R.L. is a Research Fellow of The Lister Institute of Preventive Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M.G. Castro or P.R. Löwenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewey, R., Morrissey, G., Cowsill, C. et al. Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: Implications for clinical trials. Nat Med 5, 1256–1263 (1999). https://doi.org/10.1038/15207

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing