Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A polymeric form of fibronectin has antimetastatic effects against multiple tumor types

Abstract

Metastasis accounts for most deaths in cancer patients. Tumor cell adhesion to the extracellular matrix through integrins is thought to be a critical step in metastasis and a potential target for therapeutic intervention. We show here that treatment of human osteosarcoma, melanoma and carcinoma cells with a polymeric form of fibronectin (sFN), before inoculation into nude mice, prevented tumor formation. Intraperitoneally administered sFN significantly reduced lung colonization from intravenously injected tumor cells (experimental metastasis) and from subcutaneous tumors in nude mice (spontaneous metastasis). Treatment with sFN blocked cell spreading and migration in vitro suggesting a possible mechanism for the antimetastatic effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Liotta, L.A. Tumor invasion and metastasis: Role of the extraCellular matrix [Rhoads Memorial Award Lecture]. Cancer Res. 46, 1–7 (1986).

    Article  CAS  Google Scholar 

  2. Hart, I.R., Goode, N.T. & Wilson, R.E. Molecular aspects of the metastatic cascade. Biochim. Biophys.Acta 989, 65–84 (1989).

    CAS  PubMed  Google Scholar 

  3. Fidler, I.J. & Hart, I.R. Biological diversity in metastatic neoplasms: Origins and implications. Science 217, 998–1003 (1982).

    Article  CAS  Google Scholar 

  4. Nicolson, G.L. Organ specificity of tumor metastasis: Role of preferential adhesion, invasion and growth of malignant Cells at specific secondary sites. Cancer Metastasis Rev. 7, 143–188 (1988).

    Article  CAS  Google Scholar 

  5. Zetter, B.R. Adhesion molecules in tumor metastasis. Semin. Cancer Biol. 4, 219–229 (1993).

    CAS  PubMed  Google Scholar 

  6. Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 76, 301–314 (1994).

    Article  CAS  Google Scholar 

  7. Ginsberg, M.H., Du, X. & Plow, E.F. Inside-out integrin signaling. Curr. Opin. Cell Biol, 4, 766–771 (1992).

    Article  CAS  Google Scholar 

  8. Burridge, K., Petch, L.A. & Romer, L.H. Signals from focal adhesions. Curr. Biol. 2, 537–539 (1992).

    Article  CAS  Google Scholar 

  9. Vuori, K. & Ruoslahti, E. Association of insulin receptor substrate-1 with integrins. Science 266, 1576–1578 (1994).

    Article  CAS  Google Scholar 

  10. Damsky, C.H. & Werb, Z. Signal transduction by integrin receptors for extraCellular matrix: Cooperative processing of extra Cellular information. Curr. Opin. Cell Biol. 4, 772–781 (1992).

    Article  CAS  Google Scholar 

  11. Chan, B.M.C. & Hemler, M.E. Multiple functional forms of the integrin VLA-2 can be derived from a single α2 cDNA clone: Interconversion of forms induced by an anti-βl antibody. J. Cell Biol. 120, 537–543 (1993).

    Article  CAS  Google Scholar 

  12. Arroyo, A.G., García-Pardo, A. & Sánchez-Madrid, F. A high affinity conformational state on VLA integrin heterodimers induced by an anti-β1, chain monoclonal antibody. J. Biol. Chem. 268, 9863–9868 (1993).

    CAS  PubMed  Google Scholar 

  13. O Toole, T.E. et al. Affinity modulation of the αIIbβ3, integrin (platelet GPIIb-IIIa) is an intrinsic property of the receptor. Cell Regul. 1, 883–893 (1990).

    Article  CAS  Google Scholar 

  14. Zhang, Z., Vuori, K., Wang, G.-G., Reed, J.C. & Ruoslahti, E. Integrin activation by R-ras. Cell 85, 61–69 (1996).

    Article  CAS  Google Scholar 

  15. Plantefaber, L.C. & Hynes, R.O. Changes in integrin receptors on oncogenically transformed cells. Cell 56, 281–290 (1989).

    Article  CAS  Google Scholar 

  16. Giancotti, F.G. & Mainiero, F. Integrin-mediated adhesion and signaling in tumorigenesis. Biochim. Biophys. Acta 1198, 47–64 (1994).

    CAS  PubMed  Google Scholar 

  17. Nip, J., Rabbani, S.A., Shibata, H.R. & Brodt, P. Coordinated expression of the vitronectin receptor and the urokinase-type plasminogen activator in metastatic melanoma cells. J. Clin. Invest. 95, 2096–2103 (1995).

    Article  CAS  Google Scholar 

  18. Felding-Habermann, B., Ruggeri, Z.M. & Cheresh, D.A. Distinct biological consequences of integrin αvβ3-mediated melanoma cell adhesion to fibrinogen and its plasmic fragments. J. Biol. Chem. 267, 5070–5077 (1992).

    CAS  PubMed  Google Scholar 

  19. Hynes, R.O., Integrins: Versatility, modulation and signaling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  Google Scholar 

  20. Juliano, R.L. The role of β1, integrins in tumors. Cancer Biol. 4, 277–283 (1993).

    CAS  Google Scholar 

  21. de Boer, H.C., Preissner, K.T., Bouma, B.N. & de Groot, P.G. Internalization of vitronectin-thrombin-antithrombin complex by endothelial cells leads to deposition of the complex into the subendothelial matrix. J. Biol. Chem. 270, 30733–30740 (1995).

    Article  CAS  Google Scholar 

  22. Werb, Z., Tremble, P.M., Behrendtsen, O., Crowley, E. & Damsky, C.H. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J. Cell Biol. 109, 877–889 (1989).

    Article  CAS  Google Scholar 

  23. Felding-Habermann, B., Mueller, B.M., Romerdahl, C.A. & Cheresh, D.A. Involvement of integrin αv, gene expression in human melanoma tumorigenicity. J. Clin. Invest. 89, 2018–2022 (1992).

    Article  CAS  Google Scholar 

  24. Giancotti, F.G. & Ruoslahti, E. Elevated levels of the α5β1, fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell 60, 849–859 (1990).

    Article  CAS  Google Scholar 

  25. Zutter, M.M., Santoro, S.A., Staatz, W.D. & Tsung, Y.L. Re-expression of the α2β1, integrin abrogates the malignant phenotype of breast carcinoma Cells. Proc. Natl. Acad. Set. USA 92, 7411–7415 (1995).

    Article  CAS  Google Scholar 

  26. Humphries, M.J., Olden, K. & Yamada, K.M. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science 233, 467–470 (1986).

    Article  CAS  Google Scholar 

  27. Yamada, K.M. et al. Monoclonal antibody and synthetic peptide inhibitors of human tumor cellc migration. Cancer Res. 50, 4485–4496 (1990).

    CAS  PubMed  Google Scholar 

  28. Soszka, T. et al. Inhibition of murine melanoma Cell-matrix adhesion and experimental metastasis by albolabrin an RGD-containing peptide isolated from the venom of Trimeresurus albolabris. Exp. Cell Res. 196, 6–12 (1991).

    Article  CAS  Google Scholar 

  29. Kumagai, H., Tajima, M., Ueno, Y., Giga-hama, Y. & Ohba, M. Effect of cyclic RGD peptide on Cell adhesion and tumor metastasis. Biochem. Biophys. Res. Commun. 177, 74–82 (1991).

    Article  CAS  Google Scholar 

  30. Saiki, I. et al. The inhibition of murine lung metastasis by synthetic polypeptides (poly (Arg-Gly-Asp) and poly (Tyr-Ile-Gly-Ser-Arg)] with a core sequence of cell adhesion molecules. Br. J. Cancer 59, 194–197 (1989).

    Article  CAS  Google Scholar 

  31. Komazawa, H. et al. The conjugate of RGDS peptide with CM-chitin augments the peptide-mediated inhibition of tumor metastasis. Carbohydr. Polym. 21, 299–307 (1993).

    Article  CAS  Google Scholar 

  32. Hardan, I. et al. Inhibition of metastatic cell colonization in murine lungs and tumor-induced morbidity by non-peptidic Arg-Gly-Asp mimetics. Int. J. Cancer 55, 1023–1028 (1993).

    Article  CAS  Google Scholar 

  33. Mitjans, F. et al. An anti-αv-integrin antibody that blocks integrin function inhibits the development of a human melanoma in nude mice. J. Cell Sci. 108, 2825–2838 (1995).

    CAS  PubMed  Google Scholar 

  34. Brooks, P.C. et al. Integrin αvβ3antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164 (1994).

    Article  CAS  Google Scholar 

  35. Chan, B.M.C., Matsuura, N., Takada, Y., Zetter, B.R. & Hemler, M.E. In vitro and in vivo consequences of VLA-expression on rhabdomyosarcoma cells. Science 251, 1600–1602 (1991).

    Article  CAS  Google Scholar 

  36. Qian, F., Vaux, D.L. & Weissman, I.L. Expression of the integrin α4β1 on melanoma Cells can inhibit the invasive stage of metastasis formation. Cell 77, 335–347 (1994).

    Article  CAS  Google Scholar 

  37. Ruoslahti, E. Fibronectin in cell adhesion and invasion. Cancer Metastasis Rev. 3, 43–51 (1984).

    Article  CAS  Google Scholar 

  38. Morla, A., Zhang, Z. & Ruoslahti, E. Superfibronectin is a functionally distinct form of fibronectin. Nature 367, 193–196 (1994).

    Article  CAS  Google Scholar 

  39. Koivunen, E., Wang, B. & Ruoslahti, E. Isolation of a highly specific ligand for the α5βl integrin from a phage display library. J. Cell Biol. 124, 373–380 (1994).

    Article  CAS  Google Scholar 

  40. Koivunen, E., Wang, B. & Ruoslahti, E. Phage libraries displaying cyclic peptides with different ring sizes: Ligand specificities of the RGD-directed integrins. BioTechnology 13, 265–270 (1995).

    CAS  PubMed  Google Scholar 

  41. Pierschbacher, M.D. & Ruoslahti, E. Influence of stereochemistry of the sequence Arg-Gly-Asp-Xxx on binding specificity in cell adhesion. J. Biol. Chem. 262, 17294–17298 (1987).

    CAS  PubMed  Google Scholar 

  42. Gotloib, L. & Shostak, A. Endocytosis and transcytosis of albumin gold through mice peritoneal mesothelium. Kidney Int. 47, 1274–1284 (1995).

    Article  CAS  Google Scholar 

  43. Hamilton, T.C. et al. Characterization of a human ovarian carcinoma Cell line (NIH: OVCAR-3) with androgen and estrogen receptors. Cancer Res. 43, 5379–5389 (1983).

    CAS  PubMed  Google Scholar 

  44. Blystone, S.D., Graham, I.L., Lindberg, F.P. & Brown, E.J. Integrin αvβ3 differentially regulates adhesive and phagocytic functions of the firbronectin receptor AAα5β1 . J. Cell Biol. 127, 1129–1137 (1994).

    Article  CAS  Google Scholar 

  45. Dohlman, H.G., Thorner, J., Caron, M.G. & Lefkowitz, R.J. Model systems for the study of seven-transmembrane-segment receptors. Annu. Rev. Biochem. 60, 653–658 (1991).

    Article  CAS  Google Scholar 

  46. Welch, D.R. et al. Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line. Int. J. Cancer 47, 227–237 (1991).

    Article  CAS  Google Scholar 

  47. Berlin, Ö. et al. Development of a novel spontaneous metastasis model of human osteosarcoma transplanted orthotopically into bone of athymic mice. Cancer Res. 53, 4890–4895 (1993).

    CAS  PubMed  Google Scholar 

  48. Fogh, J., Fogh, J.M. & Orfeo, T. One hundred and twenty-seven cultured human tumor Cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 59, 221–226 (1977).

    Article  CAS  Google Scholar 

  49. Tada, H., Shiho, O., Kuroshima, K., Koyama, M. & Tsukamoto, K. An improved colorimetric assay for interleukin-2. Eur. J. Immunol. 93, 157–165 (1986).

    CAS  Google Scholar 

  50. McKenown-Longo, P.J. & Mosher, D.F. Binding of plasma fibronectin to Cell layers of human skin fibroblasts. J. Cell Biol. 97, 466–472 (1983).

    Article  Google Scholar 

  51. Pasqualini, R. & Hemler, M.E. Contrasting roles for integrin β1, and β5 cytoplasmic domains in subcellular localization, cell proliferation, and cell migration. J. Cell Biol. 125, 447–460 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasqualini, R., Bourdoulous, S., Koivunen, E. et al. A polymeric form of fibronectin has antimetastatic effects against multiple tumor types. Nat Med 2, 1197–1203 (1996). https://doi.org/10.1038/nm1196-1197

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1196-1197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing