Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Human embryonic stem cells express an immunogenic nonhuman sialic acid

Abstract

Human embryonic stem cells (HESC) can potentially generate every body cell type, making them excellent candidates for cell- and tissue-replacement therapies. HESC are typically cultured with animal-derived 'serum replacements' on mouse feeder layers. Both of these are sources of the nonhuman sialic acid Neu5Gc, against which many humans have circulating antibodies. Both HESC and derived embryoid bodies metabolically incorporate substantial amounts of Neu5Gc under standard conditions. Exposure to human sera with antibodies specific for Neu5Gc resulted in binding of immunoglobulin and deposition of complement, which would lead to cell killing in vivo. Levels of Neu5Gc on HESC and embryoid bodies dropped after culture in heat-inactivated anti-Neu5Gc antibody–negative human serum, reducing binding of antibodies and complement from high-titer sera, while allowing maintenance of the undifferentiated state. Complete elimination of Neu5Gc would be likely to require using human serum with human feeder layers, ideally starting with fresh HESC that have never been exposed to animal products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of Neu5Gc on HESC cultured under conventional conditions.
Figure 2: HESC stably expressing EGFP can remain undifferentiated when NHS is substituted for animal-derived culture medium components.
Figure 3: Effect of growth in NHS on Neu5Gc content of HESC and embryoid bodies.
Figure 4: Binding of 'natural' antibodies from sera of normal human donors to HESC.
Figure 5: Binding of complement C3b from human sera to HESC.

Similar content being viewed by others

References

  1. D'Amour, K. & Gage, F. H. New tools for human developmental biology. Nat. Biotechnol. 18, 381–382 (2000).

    Article  CAS  Google Scholar 

  2. Keller, G. & Snodgrass, H. R. Human embryonic stem cells: the future is now. Nat. Med. 5, 151–152 (1999).

    Article  CAS  Google Scholar 

  3. Bradley, J. A., Bolton, E. M. & Pedersen, R. A. Stem cell medicine encounters the immune system. Nat. Rev. Immunol. 2, 859–871 (2002).

    Article  CAS  Google Scholar 

  4. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  5. Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278 (2000).

    Article  CAS  Google Scholar 

  6. Draper, J. S., Moore, H. D., Ruban, L. N., Gokhale, P. J. & Andrews, P. W. Culture and characterization of human embryonic stem cells. Stem Cells Dev. 13, 325–336 (2004).

    Article  CAS  Google Scholar 

  7. Koivisto, H. et al. Cultures of human embryonic stem cells: serum replacement medium or serum-containing media and the effect of basic fibroblast growth factor. Reprod Biomed Online 9, 330–337 (2004).

    Article  CAS  Google Scholar 

  8. Itskovitz-Eldor, J. et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6, 88–95 (2000).

    Article  CAS  Google Scholar 

  9. Carpenter, M. K., Rosler, E. & Rao, M. S. Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells 5, 79–88 (2003).

    Article  CAS  Google Scholar 

  10. Conley, B. J., Young, J. C., Trounson, A. O. & Mollard, R. Derivation, propagation and differentiation of human embryonic stem cells. Int. J. Biochem. Cell Biol. 36, 555–567 (2004).

    Article  CAS  Google Scholar 

  11. Chou, H. H. et al. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc. Natl. Acad. Sci. USA 95, 11751–11756 (1998).

    Article  CAS  Google Scholar 

  12. Varki, A. Loss of N-glycolylneuraminic acid in humans: mechanisms, consequences and implications for hominid evolution. Yearb. Phys. Anthropol. 44, 54–69 (2002).

    Google Scholar 

  13. Tangvoranuntakul, P. et al. Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc. Natl. Acad. Sci. USA 100, 12045–12050 (2003).

    Article  CAS  Google Scholar 

  14. Bardor, M., Nguyen, D.H., Diaz, S. & Varki, A. Mechanism of uptake and incorporation of the non-human sialic acid N-glycolneuraminic acid into human cells. J. Biol. Chem. published online 29 November 2004 <http://www.jbc.org/cgi/reprint/M412040200v2>

  15. Richards, M., Fong, C. Y., Chan, W. K., Wong, P. C. & Bongso, A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20, 933–936 (2002).

    Article  CAS  Google Scholar 

  16. Richards, M. et al. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 21, 546–556 (2003).

    Article  CAS  Google Scholar 

  17. Nakashima, K., Colamarino, S. & Gage, F. H. Embryonic stem cells: staying plastic on plastic. Nat. Med. 10, 23–24 (2004).

    Article  CAS  Google Scholar 

  18. Rosler, E. S. et al. Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn. 229, 259–274 (2004).

    Article  CAS  Google Scholar 

  19. Amit, M., Shariki, C., Margulets, V. & Itskovitz-Eldor, J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod. 70, 837–845 (2004).

    Article  CAS  Google Scholar 

  20. Draper, J. S. et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54 (2004).

    Article  CAS  Google Scholar 

  21. Cheng, L., Hammond, H., Ye, Z., Zhan, X. & Dravid, G. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells 21, 131–142 (2003).

    Article  CAS  Google Scholar 

  22. Hovatta, O. et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum. Reprod. 18, 1404–1409 (2003).

    Article  Google Scholar 

  23. Miyamoto, K. et al. Human placenta feeder layers support undifferentiated growth of primate embryonic stem cells. Stem Cells 22, 433–440 (2004).

    Article  Google Scholar 

  24. Yamaguchi, M. et al. Bone marrow stromal cells prepared using AB serum and bFGF for hematopoietic stem cells expansion. Transfusion 42, 921–927 (2002).

    Article  CAS  Google Scholar 

  25. Badcock, G., Pigott, C., Goepel, J. & Andrews, P. W. The human embryonal carcinoma marker antigen TRA-1-60 is a sialylated keratan sulfate proteoglycan. Cancer Res. 59, 4715–4719 (1999).

    CAS  PubMed  Google Scholar 

  26. Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O. & Thomson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129–133 (2001).

    Article  CAS  Google Scholar 

  27. Reubinoff, B. E. et al. Neural progenitors from human embryonic stem cells. Nat. Biotechnol. 19, 1134–1140 (2001).

    Article  CAS  Google Scholar 

  28. Dubois, C., Manuguerra, J.-C., Hauttecoeur, B. & Maze, J. Monoclonal antibody A2B5, which detects cell surface antigens, binds to ganglioside GT3 (II3 (NeuAc)3LacCer) and to its 9-O-acetylated derivative. J. Biol. Chem. 265, 2797–2803 (1990).

    CAS  PubMed  Google Scholar 

  29. Cowan, C. A. et al. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 350, 1353–1356 (2004).

    Article  CAS  Google Scholar 

  30. Gearhart, J. New human embryonic stem-cell lines—more is better. N. Engl. J. Med. 350, 1275–1276 (2004).

    Article  CAS  Google Scholar 

  31. Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Varki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, M., Muotri, A., Gage, F. et al. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11, 228–232 (2005). https://doi.org/10.1038/nm1181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing