Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prevention of cholesterol gallstone disease by FXR agonists in a mouse model

Abstract

Cholesterol gallstone disease is characterized by several events, including cholesterol precipitation in bile, increased bile salt hydrophobicity and gallbladder inflammation. Here, we describe the same phenotype in mice lacking the bile acid receptor, FXR. Furthermore, in susceptible wild-type mice that recapitulate human cholesterol gallstone disease, treatment with a synthetic FXR agonist prevented sequelae of the disease. These effects were mediated by FXR-dependent increases in biliary bile salt and phospholipid concentrations, which restored cholesterol solubility and thereby prevented gallstone formation. Taken together, these results indicate that FXR is a promising therapeutic target for treating or preventing cholesterol gallstone disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biliary cholesterol crystallization, lipid profiles and gallbladder inflammation in lithogenic FXR−/− mice.
Figure 2: Gene expression in lithogenic FXR−/− mice.
Figure 3: Effects of FXR agonist on cholesterol crystallization and gallstone formation in susceptible wild-type (C57L) and FXR−/− mice.
Figure 4: Liver gene expression in cholesterol gallstone susceptible C57L and FXR−/− mice.
Figure 5: Model of increased susceptibility to cholesterol gallstone formation and its prevention by FXR agonists in lithogenic animals.

Similar content being viewed by others

References

  1. Sandler, R.S. et al. The burden of selected digestive diseases in the United States. Gastroenterology 122, 1500–1511 (2002).

    Article  Google Scholar 

  2. Hay, D.W. & Carey, M.C. Pathophysiology and pathogenesis of cholesterol gallstone formation. Semin. Liver Dis. 10, 159–170 (1990).

    Article  CAS  Google Scholar 

  3. Hofmann, A.F. Pathogenesis of cholesterol gallstones. J. Clin. Gastroenterol. 10 Suppl 2 S1–S11 (1988).

    PubMed  Google Scholar 

  4. Admirand, W.H. & Small, D.M. The physicochemical basis of cholesterol gallstone formation in man. J. Clin. Invest. 47, 1043–1052 (1968).

    Article  CAS  Google Scholar 

  5. Ros, E. et al. Occult microlithiasis in 'idiopathic' acute pancreatitis: prevention of relapses by cholecystectomy or ursodeoxycholic acid therapy. Gastroenterology 101, 1701–1709 (1991).

    Article  CAS  Google Scholar 

  6. Tepperman, J., Caldwell, F.T. & Tepperman, H.M. Induction of gallstones in mice by feeding a cholesterol-cholic acid containing diet. Am. J. Physiol. 206, 628–634 (1964).

    Article  CAS  Google Scholar 

  7. Wang, D.Q., Paigen, B. & Carey, M.C. Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: physical- chemistry of gallbladder bile. J. Lipid Res. 38, 1395–1411 (1997).

    CAS  PubMed  Google Scholar 

  8. Wittenburg, H. et al. FXR and ABCG5/ABCG8 as determinants of cholesterol gallstone formation from quantitative trait locus mapping in mice. Gastroenterology 125, 868–881 (2003).

    Article  CAS  Google Scholar 

  9. Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

    Article  CAS  Google Scholar 

  10. Wang, H. et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553 (1999).

    Article  CAS  Google Scholar 

  11. Parks, D.J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365–1368 (1999).

    Article  CAS  Google Scholar 

  12. Repa, J.J. & Mangelsdorf, D.J. The liver X receptor gene team: potential new players in atherosclerosis. Nat. Med. 8, 1243–1248 (2002).

    Article  CAS  Google Scholar 

  13. Janowski, B.A. et al. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc. Natl. Acad. Sci. USA 96, 266–271 (1999).

    Article  CAS  Google Scholar 

  14. Zhang, Z. et al. Key regulatory oxysterols in liver: analysis as delta4-3-ketone derivatives by HPLC and response to physiological perturbations. J. Lipid Res. 42, 649–658 (2001).

    CAS  PubMed  Google Scholar 

  15. Lu, T.T. et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell 6, 507–515 (2000).

    Article  CAS  Google Scholar 

  16. Galman, C. et al. Bile acid synthesis is increased in Chilean Hispanics with gallstones and in gallstone high-risk Mapuche Indians. Gastroenterology 126, 741–748 (2004).

    Article  Google Scholar 

  17. Gerloff, T. et al. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J. Biol. Chem. 273, 10046–10050 (1998).

    Article  CAS  Google Scholar 

  18. Smit, J.J. et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75, 451–462 (1993).

    Article  CAS  Google Scholar 

  19. Yu, L. et al. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc. Natl. Acad. Sci. USA 99, 16237–16242 (2002).

    Article  CAS  Google Scholar 

  20. Ananthanarayanan, M. et al. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J. Biol. Chem. 276, 28857–28865 (2001).

    Article  CAS  Google Scholar 

  21. Huang, L. et al. Farnesoid X-receptor activates transcription of the phospholipid pump MDR3. J. Biol. Chem. 278, 51085–51090 (2003).

    Article  CAS  Google Scholar 

  22. Liu, Y. et al. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J. Clin. Invest. 112, 1678–1687 (2003).

    Article  CAS  Google Scholar 

  23. Repa, J.J. et al. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J. Biol. Chem. 277, 18793–18800 (2002).

    Article  CAS  Google Scholar 

  24. Wang, D.Q.H. & Carey, M.C. Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems. J. Lipid Res. 37, 606–630 (1996).

    CAS  PubMed  Google Scholar 

  25. Moschetta, A. et al. Cholesterol crystallization in model biles. Effects of bile salt and phospholipid species composition. J. Lipid Res. 42, 1273–1281 (2001).

    CAS  PubMed  Google Scholar 

  26. Shoda, J. et al. Increase of deoxycholate in supersaturated bile of patients with cholesterol gallstone disease and its correlation with de novo syntheses of cholesterol and bile acids in liver, gallbladder emptying, and small intestinal transit. Hepatology 21, 1291–1302 (1995).

    CAS  PubMed  Google Scholar 

  27. van Erpecum, K.J. et al. Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: soluble pronucleating proteins in gallbladder and hepatic biles. J. Hepatol. 35, 444–451 (2001).

    Article  CAS  Google Scholar 

  28. Heuman, D.M., Pandak, W.M., Hylemon, P.B. & Vlahcevic, Z.R. Conjugates of ursodeoxycholate protect against cytotoxicity of more hydrophobic bile salts: in vitro studies in rat hepatocytes and human erythrocytes. Hepatology 14, 920–926 (1991).

    Article  CAS  Google Scholar 

  29. Moschetta, A. et al. Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo. J. Hepatol. 34, 492–499 (2001).

    Article  CAS  Google Scholar 

  30. Angelin, B., Einarsson, K., Hellstrom, K. & Leijd, B. Effects of cholestyramine and chenodeoxycholic acid on the metabolism of endogenous triglyceride in hyperlipoproteinemia. J. Lipid Res. 19, 1017–1024 (1978).

    CAS  PubMed  Google Scholar 

  31. Sinal, C.J. et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102, 731–744 (2000).

    Article  CAS  Google Scholar 

  32. Watanabe, M. et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest. 113, 1408–1418 (2004).

    Article  CAS  Google Scholar 

  33. Khanuja, B. et al. Lith1, a major gene affecting cholesterol gallstone formation among inbred strains of mice. Proc. Natl. Acad. Sci. USA 92, 7729–7733 (1995).

    Article  CAS  Google Scholar 

  34. Goodwin, B. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell 6, 517–526 (2000).

    Article  CAS  Google Scholar 

  35. Maloney, P.R. et al. Identification of a chemical tool for the orphan nuclear receptor FXR. J. Med. Chem. 43, 2971–2974 (2000).

    Article  CAS  Google Scholar 

  36. Kok, T. et al. Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J. Biol. Chem. 278, 41930–41937 (2003).

    Article  CAS  Google Scholar 

  37. Gloor, B. et al. Incidence and management of biliary pancreatitis in cholecystectomized patients. Results of a 7-year study. J. Gastrointest. Surg. 7, 372–377 (2003).

    Article  Google Scholar 

  38. Tomida, S. et al. Long-term ursodeoxycholic acid therapy is associated with reduced risk of biliary pain and acute cholecystitis in patients with gallbladder stones: a cohort analysis. Hepatology 30, 6–13 (1999).

    Article  CAS  Google Scholar 

  39. Chawla, A., Repa, J.J., Evans, R.M. & Mangelsdorf, D.J. Nuclear receptors and lipid physiology: opening the X-files. Science 294, 1866–1870 (2001).

    Article  CAS  Google Scholar 

  40. Wang, D.Q. & Carey, M.C. Characterization of crystallization pathways during cholesterol precipitation from human gallbladder biles: identical pathways to corresponding model biles with three predominating sequences. J. Lipid Res. 37, 2539–2549 (1996).

    CAS  PubMed  Google Scholar 

  41. Portincasa, P. et al. Behavior of various cholesterol crystals in bile from patients with gallstones. Hepatology 23, 738–748 (1996).

    Article  CAS  Google Scholar 

  42. Schuetz, E.G. et al. Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J. Biol. Chem. 276, 39411–39418 (2001).

    Article  CAS  Google Scholar 

  43. Folch, J., Lees, M. & Sloan Stanley, G.H. A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 26, 497–509 (1957).

    Google Scholar 

  44. Rouser, G., Fleischer, S. & Yamamoto, A. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5, 494–496 (1970).

    Article  CAS  Google Scholar 

  45. Turley, S.D. & Dietschy, J.M. Reevaluation of the 3α-hydroxysteroid dehydrogenase assay for total bile acids in bile. J. Lipid Res. 19, 924–928 (1978).

    CAS  PubMed  Google Scholar 

  46. Rossi, S.S., Converse, J.L. & Hofmann, A.F. High pressure liquid chromatographic analysis of conjugated bile acids in human bile: simultaneous resolution of sulfated and unsulfated litocholyl amidates and the common conjugated bile acids. J. Lipid Res. 28, 589–595 (1987).

    CAS  PubMed  Google Scholar 

  47. Heuman, D.M. Quantitative estimation of the hydrophilic-hydrophobic balance of mixed bile salt solutions. J. Lipid Res. 30, 719–730 (1989).

    CAS  PubMed  Google Scholar 

  48. Fromm, H., Hamin, P., Klein, H. & Kupke, I. Use of a simple enzymatic assay for cholesterol analysis in human bile. J. Lipid Res. 21, 259–261 (1980).

    CAS  PubMed  Google Scholar 

  49. Carey, M.C. Critical tables for calculating the cholesterol saturation of native bile. J. Lipid Res. 19, 945–965 (1978).

    CAS  PubMed  Google Scholar 

  50. Bookout, A.L. & Mangelsdorf, D.J. A quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. NURSA e-Journal 1, ID# 1.11082003.1 (2003).

Download references

Acknowledgements

The authors thank F. Gonzalez for supplying the FXR−/− mice used in these studies and T. Willson (GlaxoSmithKline) for supplying the synthetic FXR agonist GW4064; D. Russell, S. Kliewer, J. Repa, G. Palasciano, P. Portincasa, G. van Berge Henegouwen, K. van Erpecum and A. Hofmann for criticisms and discussions; C. Cummins, D. Jung, A. Liverman and X. Zhi from the Mango lab for contributing to the in vivo studies and S. Clark for expertise in the HPLC measurements of bile salts. D.J.M. is an investigator and A.M. is a research associate at the Howard Hughes Medical Institute (HHMI). This work was funded by HHMI, the Robert Welch Foundation (I-1275), and the National Institutes of Health (Atlas grant U19DK62434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J Mangelsdorf.

Ethics declarations

Competing interests

D.J.M. is a consultant for X-Ceptor Therapeutics, Inc.

Supplementary information

Supplementary Fig. 1

Gene expression in wild-type, Nr1h4−/− and C57L mice. (PDF 329 kb)

Supplementary Table 1 (PDF 8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moschetta, A., Bookout, A. & Mangelsdorf, D. Prevention of cholesterol gallstone disease by FXR agonists in a mouse model. Nat Med 10, 1352–1358 (2004). https://doi.org/10.1038/nm1138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing