Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy

An Erratum to this article was published on 01 May 1999

Abstract

Temporal lobe epilepsy is the most prevalent seizure disorder in adults. Compromised inhibitory neurotransmitter function in the hippocampus contributes to the hyperexcitability generating this condition, but the underlying molecular mechanisms are unknown. Combining patch-clamp recording and single-cell mRNA amplification (aRNA) techniques in single dentate granule cells, we demonstrate that expression of GABAA receptor subunit mRNAs is substantially altered in neurons from epileptic rats. These changes in gene expression precede epilepsy onset by weeks and correlate with profound alterations in receptor function, indicating that aberrant GABAA receptor expression and function has an essential role in the process of epileptogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Whole-cell patch-clamp recordings and aRNA expression profiling in a single dentate granule neuron from a rat with temporal lobe epilepsy after pilocarpine injection.
Figure 2: Functional alterations in GABAA receptor response properties of dentate granule neurons isolated from epileptic rats.
Figure 3: Relative expression of GABAR subunit mRNAs in isolated DGCs from control rats (open bars) and chronically epileptic rats in which temporal lobe epilepsy has been elicited by pilocarpine injection (filled bars).
Figure 4: Comparative changes in GABAR expression and function in isolated DGCs from control (open bars), latent-period (hashed bars) and chronically epileptic pilocarpine-treated (solid bars) rats.
Figure 5: Relative expression of GAD67 and GAD65 mRNAs in isolated DGCs from control rats, latent-period rats and chronically epileptic rats in which temporal lobe epilepsy has been elicited by pilocarpine injection.

Similar content being viewed by others

References

  1. MacDonald, R. & Olsen, R. GABAA receptor channels. Annu. Rev. Neurosci. 17, 569– 602 (1994).

    Article  CAS  Google Scholar 

  2. Vicini, S. Pharmacologic significance of the structural heterogeneity of the GABA A receptor-chloride ion channel complex. Neuropsychopharmacology 4, 9–15 (1991 ).

    CAS  PubMed  Google Scholar 

  3. Wisden, W., Laurie, D., Monyer, M. & Seeburg, P. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencehalon, diencephalon, mesencephalon. J. Neurosci. 12, 1040–1062 (1992).

    Article  CAS  Google Scholar 

  4. DeDeyn P., Marescau B. & MacDonald R. Epilepsy and the GABA-hypothesis: a brief review and some examples. Acta Neurol. Belg. 1990 ; 90.

  5. Tasker, J. & Dudek, F. Electrophysiology of GABA-mediated synaptic transmission and possible roles in epilepsy. Neurochem. Res. 16, 251–262 (1991).

    Article  CAS  Google Scholar 

  6. Gibbs, J.G., III, Shumate, M. & Coulter, D. Differential epilepsy-associated alterations in postsynaptic GABAA receptor function in dentate granule and CA1 neurons. J. Neurophysiol. 77, 1924 –1938 (1997).

    Article  CAS  Google Scholar 

  7. Buhl, E., Otis, T. & Mody, I. Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science 271, 369– 373 (1996).

    Article  CAS  Google Scholar 

  8. Perlin J.B. et al. Kindling produces long-lasting and selective changes in gene expression of hippocampal neurons. Proc. Natl. Acad. Sci. USA 90, 1741–5 ( 1993).

    Article  CAS  Google Scholar 

  9. Friedman, L. et al. Kainate-induced status epilepticus alters glutamate and GABA A receptor gene expression in adult rat hippocampus: an in situ hybrization study. J. Neurosci. 14, 2697 –2707 (1994).

    Article  CAS  Google Scholar 

  10. Tsunashima, K., Schwarzer, C., Kirchmair, E., Sieghart, W. & Sperk, G. GABAA receptor subunits in the rat hippocampus III: altered messenger RNA expression in kainic acid-induced epilepsy. Neuroscience 80, 1019–1032 (1997).

    Article  CAS  Google Scholar 

  11. Kokaia, M. et al. Biphasic differential changes of GABAA receptor subunit mRNA levels in dentate gyrus granule cells following recurrent kindling-induced seizures. Mol. Brain Res. 23, 323–332 (1994).

    Article  CAS  Google Scholar 

  12. Kamphuis, W., DeRuk, T. & DaSilva, F.L. Expression of GABAA receptor subunit mRNAs in hippocampal pyramidal and granular neurons in the kindling model of epileptogenesis: an in situ hybridization study. Mol. Brain Res. 31, 33–47 ( 1995).

    Article  CAS  Google Scholar 

  13. Rice, A. et al. Long-lasting reduction of inhibitory function and γ-aminobutyric acid type A receptor subunit mRNA expression in a model of temporal lobe epilepsy. Proc. Natl. Acad. Sci. USA 93, 9665– 9669 (1996).

    Article  CAS  Google Scholar 

  14. VanGelder, R. et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87, 1663 –1667 (1990).

    Article  CAS  Google Scholar 

  15. Eberwine, J. et al. Analysis of gene expression in single live neurons. Proc. Natl. Acad. Sci. USA 89, 3010– 3014 (1992).

    Article  CAS  Google Scholar 

  16. Racine, R. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32, 281–294 (1972).

    Article  CAS  Google Scholar 

  17. Mello, L. et al. Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 34, 985–995 (1993).

    Article  CAS  Google Scholar 

  18. Pritchett, D., Luddens, H. & Seeburg, P. Type I and type II GABAA -benzodiazepine receptor produced in transfected cells. Science. 245, 1389–1392 ( 1989).

    Article  CAS  Google Scholar 

  19. Fisher, J. & Macdonald, R. The role of an α subtype M2-M3 His in regulating inhibition of GABA A receptor current by zinc and other divalent cations. J. Neurosci. 18, 2944–2953 (1998).

    Article  CAS  Google Scholar 

  20. Burgard, E., Tietz, E., Neelands, T. & Macdonald, R. Properties of recombinant gamma-aminobutyric acid A receptor isoforms containing the alpha 5 subunit subtype. Mol. Pharm. 50, 119– 127 (1996).

    CAS  Google Scholar 

  21. Knoflach, F. et al. Pharmacological modulation of the diazepam-insensitive recombinant γ-amino butyric acidA receptors α4 β2 γ 2 and α6 β2 γ2. Mol. Pharm. 50, 1253–1261 (1996).

    CAS  Google Scholar 

  22. Saxena, N.C & Macdonald, R. Properties of putative cerebellar gamma-aminobutyric acid A receptor isoforms. Mol. Pharm. 49, 458–466 ( 1996).

    Google Scholar 

  23. White, G. & Gurley, D. α subunits influence Zinc block of γ2 containing GABAA receptor currents. Neuroreport 6, 461–464 (1995).

    Article  CAS  Google Scholar 

  24. Whiting, P. et al. Neuronally restricted RNA splicing regulates the expression on a novel GABA receptor subunit conferring atypical functional properties. J. Neurosci. 17, 5027– 5037 (1997).

    Article  CAS  Google Scholar 

  25. Draguhn, A., Verdoorn, T., Ewert, M., Seeburg, P. & Sakmann, B. Functional and molecular distinction between recombinant GABAA receptor subtypes by zinc. Neuron 5, 781–788 ( 1990).

    Article  CAS  Google Scholar 

  26. Saxena, N. & Macdonald, R. Assembly of GABAA receptor subunits: role of the delta subunit. J. Neurosci. 14, 7077–7086 (1994).

    Article  CAS  Google Scholar 

  27. Verdoorn, T. et. al. Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 4 , 919–928 (1990).

    Article  CAS  Google Scholar 

  28. Sigel, E. et. al. The effect of subunit composition of rat brain GABA A receptors on channel function. Neuron 5, 703–711 (1990).

    Article  CAS  Google Scholar 

  29. Bureau, M. & Olsen, R. Multiple distinct subunits of the γ-Aminobutyric Acid-A receptor protein show different ligand-binding affinities. Mol. Pharm. 37, 497– 502 (1990).

    CAS  Google Scholar 

  30. Donnelly, J. & MacDonald, R. Loreclezole enhances apparent desensitization of recombinant GABAA receptor currents. Neuropharmacology 35, 1233– 1241 (1996).

    Article  CAS  Google Scholar 

  31. McDonald, B.J. et al. Adjacent phosphorylation sites on GABAA receptor β subunits determine regulation by cAMP-dependent protein kinase. Nature Neurosci. 1, 23– 28 (1998).

    Article  CAS  Google Scholar 

  32. Jones A. et al. Ligand-gated ion channel subunit partnerships: GABA A receptor α6 subunit gene inactivation inhibits δ subunit expression. J. Neurosci. 17, 1350 –1362 (1997).

    Article  CAS  Google Scholar 

  33. Killisch, I., Dotti, C., Laurie, D., Luddens, H. & Seeburg, P. Expression patterns of GABAA receptor subtypes in developing hippocampal neurons. Neuron 7, 927–936 (1991).

    Article  CAS  Google Scholar 

  34. Walker, M., Galley, P., Errington, M., Shorvon, S. & Jefferys, J. Ascorbate and glutamate release in the rat hippocampus after perforant path stimulation: a "dialysis electrode" study. J. Neurochem. 65, 725– 731 (1995).

    Article  CAS  Google Scholar 

  35. Mellor, J., Merlo, D., Jones, A., Wisden, W. & Randall, A. Mouse cerebellar granule cell differentiation: Electrical activity regulates the GABAA receptor α 6 subunit gene. J. Neurosci. 18, 2822 –2283 (1998).

    Article  CAS  Google Scholar 

  36. Cao, Y. et al. Presence of mRNA for glutamic acid decarboxylase in both excitatory and inhibitory neurons. Proc. Natl. Acad. Sci. USA 93, 9844–9849 (1996).

    Article  CAS  Google Scholar 

  37. Sloviter, R. et al. Basal expression and induction of glutamate decarboxylase and GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus. J. Comp. Neurol. 373, 593– 618 (1996).

    Article  CAS  Google Scholar 

  38. Schwarzer C. & Sperk G. Hippocampal granule cells express glutamic acid decarboxylase-67 after limbic seizures in the rat. Neuroscience 69, 705–9 ( 1995).

    Article  CAS  Google Scholar 

  39. Howell, G., Welch, M. & Frederickson, C. Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308, 736– 738 (1984).

    Article  CAS  Google Scholar 

  40. Assaf, Y. & Chung, S.-H. Release of endogenous Zn2+ from brain tissue during activity. Nature 308, 734–736 (1984).

    Article  CAS  Google Scholar 

  41. Tauck, D. & Nadler, J. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J. Neurosci. 5, 1016–1022 (1985).

    Article  CAS  Google Scholar 

  42. Okazaki, M., Evenson, D. & Nadler, J. Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: visualization after retrograde transport of biocytin. J. Comp. Neurol. 352, 515– 534 (1995).

    Article  CAS  Google Scholar 

  43. Fraser, D., Duffy, S. & Angelides, K. GABAA/Benzodiazepine receptors in acutely isolated hippocampal astrocytes. J. Neurosci. 15, 2720–2732 (1995).

    Article  CAS  Google Scholar 

  44. White, H.S., Wolf, H., Woodhead, J. & Kupferberg, J. The National Institute of Health anticonvulsant drug development program: screening for efficacy. Adv. Neurol. 76, 29– 39 (1998).

    CAS  PubMed  Google Scholar 

  45. Brooks-Kayal, A., Jin, H., Price, M. & Dichter, M. Developmental expression of GABAA receptor subunit mRNAs in individual hippocampal neurons in vitro and in vivo. J. Neurochem. 70, 1017–1028 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Eberwine, M. Dichter, D. Pleasure, M. Robinson, D. Lynch and R. DeLorenzo for their critical review of the manuscript, and M. Ciafre for assistance with manuscript preparation. This work was supported by grants from the National Institutes of Health (K08 NS01936 and HD28815 to ABK, and R01 NS32403 and P01 NS25630 to DAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy R. Brooks-Kayal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks-Kayal, A., Shumate, M., Jin, H. et al. Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy. Nat Med 4, 1166–1172 (1998). https://doi.org/10.1038/2661

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2661

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing