Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Niemann–Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone

Abstract

Niemann–Pick type C (NP-C) disease is a fatal, autosomal recessive, childhood neurodegenerative disease. The NP-C mouse recapitulates the cholesterol and sphingolipid storage, onset of neurological deficits, histopathological lesions, Purkinje cell loss and early death typical of the most severe form of human NP-C. Neurosteroids, steroids made in the brain, affect neuronal growth and differentiation, and modulate neurotransmitter receptors. Disordered cholesterol trafficking might disrupt neurosteroidogenesis, thereby contributing to the NP-C phenotype. Here we show that NP-C mouse brain contains substantially less neurosteroid than wild-type brain and has an age-related decrease in the ability to synthesize 5α-dihydroprogesterone and allopregnanolone. Immunohistochemical assessment confirms a decrease in expression of 5α-reductase and 3α-hydroxysteroid dehydrogenase, especially in cerebellum. Neonatal administration of allopregnanolone delays the onset of neurological symptoms, increases Purkinje and granule cell survival, reduces cortical GM2 and GM3 ganglioside accumulation and doubles the lifespan of NP-C mice. Earlier administration increases effectiveness of treatment. Decreased production of allopregnanolone apparently contributes to the pathology of NP-C; thus, neurosteroid treatment may be useful in ameliorating progression of the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurosteroidogenesis in wild-type and NP-C mice.
Figure 2: Cortical and cerebellar neurosteroidogenic enzyme expression in wild-type and NP-C mice.
Figure 3: Role of GABAA receptors in mediating response to allopregnanolone.
Figure 4: Effect of allopregnanolone (Allo) injections on progression of NP-C symptoms.
Figure 5: Cerebellar histology in NP-C mice treated with allopregnanolone at P7.
Figure 6: Ganglioside profiles in cortex from NP-C mice treated with allopregnanolone.

Similar content being viewed by others

References

  1. Patterson, M.C. et al. Niemann-Pick disease type C: a lipid trafficking disorder. in The Metabolic and Molecular Bases of Inherited Disease (eds. Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 3611–3633 (McGraw-Hill, New York, 2001).

    Google Scholar 

  2. Fink, J.K. et al. Clinical spectrum of Niemann-Pick disease type C. Neurology 39, 1040–1049 (1989).

    Article  Google Scholar 

  3. Vanier, M.T. & Millat, G. Niemann-Pick disease type C. Clin. Genet. 64, 269–281 (2003).

    Article  Google Scholar 

  4. Vanier, M.T., Duthel, S., Rodriguez-Lafrasse, C., Pentchev, P. & Carstea, E.D. Genetic heterogeneity in Niemann-Pick C disease: a study using somatic cell hybridization and linkage analysis. Am. J. Hum. Genet. 58, 118–125 (1996).

    PubMed  PubMed Central  Google Scholar 

  5. Naureckiene, S. et al. Identification of HE1 as the second gene of Niemann-Pick C disease. Science 290, 2298–2301 (2000).

    Article  Google Scholar 

  6. Carstea, E.D. et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277, 228–231 (1997).

    Article  Google Scholar 

  7. Roff, C.F. et al. Niemann-Pick type-C disease: deficient intracellular transport of exogenously derived cholesterol. Am. J. Med. Genet. 42, 593–598 (1992).

    Article  Google Scholar 

  8. Cruz, J.C. & Chang, T.Y. Fate of endogenously synthesized cholesterol in Niemann-Pick type C1 cells. J. Biol. Chem. 275, 41309–41316 (2000).

    Article  Google Scholar 

  9. Zervas, M., Dobrenis, K. & Walkley, S.U. Neurons in Niemann-Pick disease type C accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations. J. Neuropathol. Exp. Neurol. 60, 49–64 (2001).

    Article  Google Scholar 

  10. Morris, M.D., Bhuvaneswaran, C., Shio, H. & Fowler, S. Lysosome lipid storage disorder in NCTR-BALB/c mice. I. Description of the disease and genetics. Am. J. Pathol. 108, 140–149 (1982).

    PubMed  PubMed Central  Google Scholar 

  11. Loftus, S.K. et al. Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science 277, 232–235 (1997).

    Article  Google Scholar 

  12. Higashi, Y., Murayama, S., Pentchev, P.G. & Suzuki, K. Cerebellar degeneration in the Niemann-Pick type C mouse. Acta Neuropathol. (Berl.) 85, 175–184 (1993).

    Article  Google Scholar 

  13. Ong, W.Y. et al. Neurodegeneration in Niemann-Pick type C disease mice. Exp. Brain Res. 141, 218–231 (2001).

    Article  Google Scholar 

  14. Vincent, I., Bu, B. & Erickson, R.P. Understanding Niemann-Pick type C disease: a fat problem. Curr. Opin. Neurol. 16, 155–161 (2003).

    Article  Google Scholar 

  15. Xie, C., Burns, D.K., Turley, S.D. & Dietschy, J.M. Cholesterol is sequestered in the brains of mice with Niemann-Pick type C disease but turnover is increased. J. Neuropathol. Exp. Neurol. 59, 1106–1117 (2000).

    Article  Google Scholar 

  16. Xie, C., Lund, E.G., Turley, S.D., Russell, D.W. & Dietschy, J.M. Quantitation of two pathways for cholesterol excretion from the brain in normal mice and mice with neurodegeneration. J. Lipid Res. 44, 1780–1789 (2003).

    Article  Google Scholar 

  17. Braak, H., Braak, E. & Goebel, H.H. Isocortical pathology in type C Niemann-Pick disease. A combined Golgi-pigmentoarchitectonic study. J. Neuropathol. Exp. Neurol. 42, 671–687 (1983).

    Article  Google Scholar 

  18. Suzuki, K. et al. Neurofibrillary tangles in Niemann-Pick disease type C. Acta Neuropathol. (Berl.) 89, 227–238 (1995).

    Article  Google Scholar 

  19. German, D.C. et al. Selective neurodegeneration, without neurofibrillary tangles, in a mouse model of Niemann-Pick C disease. J. Comp. Neurol. 433, 415–425 (2001).

    Article  Google Scholar 

  20. Walkley, S.U., Siegel, D.A., Dobrenis, K. & Zervas, M. GM2 ganglioside as a regulator of pyramidal neuron dendritogenesis. Ann. NY Acad. Sci. 845, 188–199 (1998).

    Article  Google Scholar 

  21. Zervas, M., Somers, K.L., Thrall, M.A. & Walkley, S.U. Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr. Biol. 11, 1283–1287 (2001).

    Article  Google Scholar 

  22. Liu, Y. et al. Alleviation of neuronal ganglioside storage does not improve the clinical course of the Niemann-Pick C disease mouse. Hum. Mol. Genet. 9, 1087–1092 (2000).

    Article  Google Scholar 

  23. Gondre-Lewis, M.C., McGlynn, R. & Walkley, S.U. Cholesterol accumulation in NPC1-deficient neurons is ganglioside dependent. Curr. Biol. 13, 1324–1329 (2003).

    Article  Google Scholar 

  24. Roff, C.F. et al. The murine Niemann-Pick type C lesion affects testosterone production. Endocrinology 133, 2913–2923 (1993).

    Article  Google Scholar 

  25. Compagnone, N.A. & Mellon, S.H. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front. Neuroendocrinol. 21, 1–56 (2000).

    Article  Google Scholar 

  26. Costa, E. & Paul, S.M. Neurosteroids and Brain Function (Thieme Medical Publishers, New York, 1991).

    Google Scholar 

  27. Brinton, R.D. The neurosteroid 3α-hydroxy-5α-pregnan-20-one induces cytoarchitectural regression in cultured fetal hippocampal neurons. J. Neurosci. 14, 2763–2774 (1994).

    Article  Google Scholar 

  28. Brussaard, A.B., Wossink, J., Lodder, J.C. & Kits, K.S. Progesterone-metabolite prevents protein kinase C-dependent modulation of γ-aminobutyric acid type A receptors in oxytocin neurons. Proc. Natl. Acad. Sci. USA 97, 3625–3630 (2000).

    PubMed  Google Scholar 

  29. Concas, A. et al. Role of brain allopregnanolone in the plasticity of γ-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc. Natl. Acad. Sci. USA 95, 13284–13289 (1998).

    Article  Google Scholar 

  30. Grobin, A.C., Heenan, E.J., Lieberman, J.A. & Morrow, A.L. Perinatal neurosteroid levels influence GABAergic interneuron localization in adult rat prefrontal cortex. J. Neurosci. 23, 1832–1839 (2003).

    Article  Google Scholar 

  31. Miller, W.L. Molecular biology of steroid hormone synthesis. Endocr. Rev. 9, 295–318 (1988).

    Article  Google Scholar 

  32. Belelli, D. & Gee, K.W. 5α-Pregnan-3α,20α-diol behaves like a partial agonist in the modulation of GABA-stimulated chloride ion uptake by synaptoneurosomes. Eur. J. Pharmacol. 167, 173–176 (1989).

    Article  Google Scholar 

  33. Purdy, R.H., Morrow, A.L., Blinn, J.R. & Paul, S.M. Synthesis, metabolism, and pharmacological activity of 3α-hydroxy steroids which potentiate GABA-receptor-mediated chloride ion uptake in rat cerebral cortical synaptoneurosomes. J. Med. Chem. 33, 1572–1581 (1990).

    Article  Google Scholar 

  34. Prasad, A., Fischer, W.A., Maue, R.A. & Henderson, L.P. Regional and developmental expression of the Npc1 mRNA in the mouse brain. J. Neurochem. 75, 1250–1257 (2000).

    Article  Google Scholar 

  35. Henderson, L.P. et al. Embryonic striatal neurons from Niemann-Pick type C mice exhibit defects in cholesterol metabolism and neurotrophin responsiveness. J. Biol. Chem. 275, 20179–20187 (2000).

    Article  Google Scholar 

  36. Voikar, V., Koks, S., Vasar, E. & Rauvala, H. Strain and gender differences in the behavior of mouse lines commonly used in transgenic studies. Physiol. Behav. 72, 271–281 (2001).

    Article  Google Scholar 

  37. Lambert, J.J., Belelli, D., Peden, D.R., Vardy, A.W. & Peters, J.A. Neurosteroid modulation of GABAA receptors. Prog. Neurobiol. 71, 67–80 (2003).

    Article  Google Scholar 

  38. Lin, D. et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 267, 1828–1831 (1995).

    Article  Google Scholar 

  39. Soccio, R.E. & Breslow, J.L. StAR-related lipid transfer (START) proteins: mediators of intracellular lipid metabolism. J. Biol. Chem. 278, 22183–22186 (2003).

    Article  Google Scholar 

  40. Griffin, L.D. & Mellon, S.H. Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc. Natl. Acad. Sci. USA 96, 13512–13517 (1999).

    Article  Google Scholar 

  41. Griffin, L.D. & Mellon, S.H. Biosynthesis of the neurosteroid 3α-hydroxy-4-pregnen-20-one (3α HP), a specific inhibitor of FSH release. Endocrinology 142, 4617–4622 (2001).

    Article  Google Scholar 

  42. Wiebe, J.P., Boushy, D. & Wolfe, M. Synthesis, metabolism and levels of the neuroactive steroid, 3α-hydroxy-4-pregnen-20-one (3αHP), in rat pituitaries. Brain Res. 764, 158–166 (1997).

    Article  Google Scholar 

  43. Purdy, R.H. et al. Radioimmunoassay of 3α-hydroxy-5α-pregnan-20-one in rat and human plasma. Steroids 55, 290–296 (1990).

    Article  Google Scholar 

  44. Black, S.M. et al. Regulation of proteins in the cholesterol side-chain cleavage system in JEG-3 and Y-1 cells. Endocrinology 132, 539–545 (1993).

    Article  Google Scholar 

  45. Viger, R.S. & Robaire, B. Immunocytochemical localization of 4-ene steroid 5α-reductase type 1 along the rat epididymis during postnatal development. Endocrinology 134, 2298–2306 (1994).

    Article  Google Scholar 

  46. Doody, K.M. et al. 3β-hydroxysteroid dehydrogenase/isomerase in the fetal zone and neocortex of the human fetal adrenal gland. Endocrinology 126, 2487–2492 (1990).

    Article  Google Scholar 

  47. Karl, T., Pabst, R. & von Horsten, S. Behavioral phenotyping of mice in pharmacological and toxicological research. Exp. Toxicol. Pathol. 55, 69–83 (2003).

    Article  Google Scholar 

  48. Basso, D.M., Beattie, M.S. & Bresnahan, J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 12, 1–21 (1995).

    Article  Google Scholar 

  49. Fujita, N. et al. Targeted disruption of the mouse sphingolipid activator protein gene: a complex phenotype, including severe leukodystrophy and wide-spread storage of multiple sphingolipids. Hum. Mol. Genet. 5, 711–725 (1996).

    Article  Google Scholar 

  50. Kyrklund, T. Two procedures to remove polar contaminants from a crude brain lipid extract by using prepacked reversed-phase columns. Lipids 22, 274–277 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Brown, T. Tang and P. Hoang for technical assistance; B. Robaire for antiserum to rat 5α-reductase type 1; W.L. Miller for antiserum to human P450scc; J.I. Mason for antiserum to human 3βHSD; P. Sluss for antiserum to allopregnanolone; and M.T. Vanier, in whose laboratory the lipid analyses were done. This work was supported by the National Institutes of Health (S.H.M. and L.D.G.), National Niemann Pick Disease Foundation (S.H.M. and L.D.G.), March of Dimes Birth Defects Foundation (S.H.M.), Ara Parseghian Medical Research Foundation (S.H.M.) and Vaincre les Maladies Lysosomales (L.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Synthia H Mellon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffin, L., Gong, W., Verot, L. et al. Niemann–Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat Med 10, 704–711 (2004). https://doi.org/10.1038/nm1073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing