Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein aggregation and neurodegenerative disease

Abstract

Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and prion diseases are increasingly being realized to have common cellular and molecular mechanisms including protein aggregation and inclusion body formation. The aggregates usually consist of fibers containing misfolded protein with a β-sheet conformation, termed amyloid. There is partial but not perfect overlap among the cells in which abnormal proteins are deposited and the cells that degenerate. The most likely explanation is that inclusions and other visible protein aggregates represent an end stage of a molecular cascade of several steps, and that earlier steps in the cascade may be more directly tied to pathogenesis than the inclusions themselves. For several diseases, genetic variants assist in explaining the pathogenesis of the more common sporadic forms and developing mouse and other models. There is now increased understanding of the pathways involved in protein aggregation, and some recent clues have emerged as to the molecular mechanisms of cellular toxicity. These are leading to approaches toward rational therapeutics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristic neurodegenerative disease neuropathological lesions involve deposition of abnormal proteins, which can be intranuclear, cytoplasmic or extracellular.
Figure 2: β-sheet, β-turn models for expanded polyglutamine and Aβ amyloid suggest commonalities in amyloid structure in different neurodegenerative diseases.
Figure 3: Flowchart for therapeutic intervention in a hypothetical several-step pathway of protein aggregation.

Similar content being viewed by others

References

  1. Taylor, J.P., Hardy, J. & Fischbeck, K.H. Toxic proteins in neurodegenerative disease. Science 296, 1991–1995 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Bates, G. Huntingtin aggregation and toxicity in Huntington's disease. Lancet 361, 1642–1644 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Caughey, B. & Lansbury, P.T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Berke, S.J. & Paulson, H.L. Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration. Curr. Opin. Genet. Dev. 13, 253–261 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Ross, C.A. & Pickart, C. The ubiquitin-proteasome pathway in Parkinson's and other neurodegenerative diseases. Trends Cell Biol. (2004).

  6. Nussbaum, R.L. & Ellis, C.E. Alzheimer's disease and Parkinson's disease. N. Engl. J. Med. 348, 1356–1364 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Wong, P.C., Cai, H., Borchelt, D.R. & Price, D.L. Genetically engineered mouse models of neurodegenerative diseases. Nat. Neurosci. 5, 633–639 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Ross, C.A. When more is less: pathogenesis of glutamine repeat neurodegenerative diseases. Neuron 15, 493–496 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Selkoe, D.J. Folding proteins in fatal ways. Nature 426, 900–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Davies, S.W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Scherzinger, E. et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Proc. Natl. Acad. Sci. USA 96, 4604–4609 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vonsattel, J.P. et al. Neuropathological classification of Huntington's disease. J. Neuropathol. Exp. Neurol. 44, 559–577 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Kuemmerle, S. et al. Huntington aggregates may not predict neuronal death in Huntington's disease. Ann. Neurol. 46, 842–849 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Gutekunst, C.A. et al. Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J. Neurosci. 19, 2522–2534 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Becher, M.W. et al. Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol. Dis. 4, 387–397 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Myers, R.H. et al. Clinical and neuropathologic assessment of severity in Huntington disease. Neurology 38, 341–347 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Venkatraman, P., Wetzel, R., Tanaka, M., Nukina, N. & Goldberg, A.L. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol. Cell 14, 95–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, C.C. et al. Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat. Cell Mol. Genet. 24, 217–233 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D. & Housman, D. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl. Acad. Sci. USA 96, 11404–11409 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Margolis, R.L. & Ross, C.A. Expansion explosion: new clues to the pathogenesis of repeat expansion neurodegenerative diseases. Trends Mol. Med. 7, 479–482 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Orr, H.T. & Zoghbi, H.Y. SCA1 molecular genetics: a history of a 13 year collaboration against glutamines. Hum. Mol. Genet. 10, 2307–2311 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Sen, S., Dash, D., Pasha, S. & Brahmachari, S.K. Role of histidine interruption in mitigating the pathological effects of long polyglutamine stretches in SCA1: a molecular approach. Protein Sci. 12, 953–962 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Selkoe, D.J. Alzheimer's disease is a synaptic failure. Science 298, 789–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Serpell, L.C. & Smith, J.M. Direct visualisation of the β-sheet structure of synthetic Alzheimer's amyloid. J. Mol. Biol. 299, 225–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Esler, W.P. & Wolfe, M.S. A portrait of Alzheimer secretases—new features and familiar faces. Science 293, 1449–1454 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Citron, M. Alzheimer's disease: treatments in discovery and development. Nat. Neurosci. 5 (suppl.), 1055–1057 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Goedert, M. Tau protein and neurodegeneration. Semin. Cell Dev. Biol. 15, 45–49 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Ingram, E.M. & Spillantini, M.G. Tau gene mutations: dissecting the pathogenesis of FTDP–17. Trends Mol. Med. 8, 555–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Forno, L.S. Neuropathology of Parkinson's disease. J. Neuropathol. Exp. Neurol. 55, 259–272 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Dawson, T.M. & Dawson, V.L. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J. Clin. Invest 111, 145–151 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Valente, E.M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Cleveland, D.W. & Rothstein, J.D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806–819 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Bruijn, L.I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851–1854 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Rakhit, R. et al. Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J. Biol. Chem. 277, 47551–47556 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Prusiner, S.B. Shattuck lecture—neurodegenerative diseases and prions. N. Engl. J. Med. 344, 1516–1526 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Lindquist, S., Krobitsch, S., Li, L. & Sondheimer, N. Investigating protein conformation-based inheritance and disease in yeast. Phil. Trans. R. Soc. Lond. B 356, 169–176 (2001).

    Article  CAS  Google Scholar 

  38. Scheibel, T., Bloom, J. & Lindquist, S.L. The elongation of yeast prion fibers involves separable steps of association and conversion. Proc. Natl. Acad. Sci. USA 101, 2287–2292 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma, J., Wollmann, R. & Lindquist, S. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298, 1781–1785 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Ma, J. & Lindquist, S. Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 298, 1785–1788 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Eanes, E.D. & Glenner, G.G. X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem. 16, 673–677 (1968).

    Article  CAS  PubMed  Google Scholar 

  42. Sunde, M. & Blake, C.C. From the globular to the fibrous state: protein structure and structural conversion in amyloid formation. Q. Rev. Biophys. 31, 1–39 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Benzinger, T.L. et al. Propagating structure of Alzheimer's β-amyloid(10–35) is parallel β-sheet with residues in exact register. Proc. Natl. Acad. Sci. USA 95, 13407–13412 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tycko, R. Insights into the amyloid folding problem from solid-state NMR. Biochemistry 42, 3151–3159 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Torok, M. et al. Structural and dynamic features of Alzheimer's Aβ peptide in amyloid fibrils studied by site-directed spin labeling. J. Biol. Chem. 277, 40810–40815 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. Der-Sarkissian, A., Jao, C.C., Chen, J. & Langen, R. Structural organization of α-synuclein fibrils studied by site-directed spin labeling. J. Biol. Chem. 278, 37530–37535 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Benzinger, T.L. et al. Two-dimensional structure of β-amyloid(10–35) fibrils. Biochemistry 39, 3491–3499 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Balbach, J.J. et al. Amyloid fibril formation by Aβ16–22, a seven-residue fragment of the Alzheimer's β-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39, 13748–13759 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Williams, A.D. et al. Mapping Aβ amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335, 833–842 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Thakur, A.K. & Wetzel, R. Mutational analysis of the structural organization of polyglutamine aggregates. Proc. Natl. Acad. Sci. USA 99, 17014–17019 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ross, C.A., Poirier, M.A., Wanker, E.E. & Amzel, M. Polyglutamine fibrillogenesis: the pathway unfolds. Proc. Natl. Acad. Sci. USA 100, 1–3 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, S., Berthelier, V., Hamilton, J.B., O'Nuallain, B. & Wetzel, R. Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41, 7391–7399 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. O'Nuallain, B. & Wetzel, R. Conformational Abs recognizing a generic amyloid fibril epitope. Proc. Natl. Acad. Sci. USA 99, 1485–1490 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Uversky, V.N. Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go? Cell Mol. Life Sci. 60, 1852–1871 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Clarke, G. et al. A one-hit model of cell death in inherited neuronal degenerations. Nature 406, 195–199 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Dobson, C.M. Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol. 15, 3–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Sacchettini, J.C. & Kelly, J.W. Therapeutic strategies for human amyloid diseases. Nat. Rev. Drug Discov. 1, 267–275 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Lansbury, P.T., Jr. Structural neurology: are seeds at the root of neuronal degeneration? Neuron 19, 1151–1154 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 4, 49–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Singleton, A.B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Singleton, A., Myers, A. & Hardy, J. The law of mass action applied to neurodegenerative disease: a hypothesis concerning the etiology and pathogenesis of complex diseases. Hum. Mol. Genet. 13 (special no 1), R123–R126 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Conway, K.A., Rochet, J.C., Bieganski, R.M. & Lansbury, P.T., Jr. Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science 294, 1346–1349 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Giasson, B.I. et al. Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290, 985–989 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Iwatsubo, T. et al. Purification and characterization of Lewy bodies from the brains of patients with diffuse Lewy body disease. Am. J. Pathol. 148, 1517–1529 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Iwatsubo, T. Aggregation of α-synuclein in the pathogenesis of Parkinson's disease. J. Neurol. 250 (suppl. 3), III11–III14 (2003).

    PubMed  Google Scholar 

  66. Okochi, M. et al. Constitutive phosphorylation of the Parkinson's disease associated α-synuclein. J. Biol. Chem. 275, 390–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Spillantini, M.G. et al. α-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Emamian, E.S. et al. Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron 38, 375–387 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Steffan, J.S. et al. Modification of Huntingtin and Huntington's disease pathology. Science 304, 100–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M.E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Peters, M.F. et al. Nuclear targeting of mutant Huntingtin increases toxicity. Mol. Cell Neurosci. 14, 121–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. de Almeida, L.P., Ross, C.A., Zala, D., Aebischer, P. & Deglon, N. Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length. J. Neurosci. 22, 3473–3483 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wellington, C.L. et al. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease. J. Neurosci. 22, 7862–7872 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gafni, J. et al. Inhibition of calpain cleavage of Huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. J. Biol. Chem. 279, 21211–21220 (2004).

    Article  CAS  Google Scholar 

  76. Lunkes, A. et al. Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol. Cell 10, 259–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Poirier, M.A. et al. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J. Biol. Chem. 277, 41032–41037 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Nucifora, F.C., Jr. et al. Nuclear localization of a non-caspase truncation product of atrophin-1, with an expanded polyglutamine repeat, increases cellular toxicity. J. Biol. Chem. 278, 13047–13055 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Lee, E.N. et al. Phthalocyanine tetrasulfonates affect the amyloid formation and cytotoxicity of α-synuclein. Biochemistry 43, 3704–3715 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Buxbaum, J.N. Diseases of protein conformation: what do in vitro experiments tell us about in vivo diseases? Trends Biochem. Sci. 28, 585–592 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Wetzel, R. Ideas of order for amyloid fibril structure. Structure (Camb) 10, 1031–1036 (2002).

    Article  CAS  Google Scholar 

  82. Soreghan, B., Kosmoski, J. & Glabe, C. Surfactant properties of Alzheimer's Aβ peptides and the mechanism of amyloid aggregation. J. Biol. Chem. 269, 28551–28554 (1994).

    CAS  PubMed  Google Scholar 

  83. Harper, J.D., Lieber, C.M. & Lansbury, P.T., Jr. Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-β protein. Chem. Biol. 4, 951–959 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Lambert, M.P. et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Harper, J.D., Wong, S.S., Lieber, C.M. & Lansbury, P.T., Jr. Assembly of Aβ amyloid protofibrils: an in vitro model for a possible early event in Alzheimer's disease. Biochemistry 38, 8972–8980 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Harper, J.D. & Lansbury, P.T., Jr. Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Walsh, D.M., Lomakin, A., Benedek, G.B., Condron, M.M. & Teplow, D.B. Amyloid β-protein fibrillogenesis. Detection of a protofibrillar intermediate. J. Biol. Chem. 272, 22364–22372 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Klein, W.L., Krafft, G.A. & Finch, C.E. Targeting small Aβ oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci. 24, 219–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Terry, R.D. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. McLean, C.A. et al. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann. Neurol. 46, 860–866 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Lue, L.F. et al. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am. J. Pathol. 155, 853–862 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Walsh, D.M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Volles, M.J. et al. Vesicle permeabilization by protofibrillar α-synuclein: implications for the pathogenesis and treatment of Parkinson's disease. Biochemistry 40, 7812–7819 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Sharon, R. et al. The formation of highly soluble oligomers of α-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron 37, 583–595 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Chen, S., Berthelier, V., Yang, W. & Wetzel, R. Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol. 311, 173–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Sanchez, I., Mahlke, C. & Yuan, J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421, 373–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Nucifora, F.C., Jr. et al. Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291, 2423–2428 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Jiang, H., Nucifora, F.C., Jr., Ross, C.A. & DeFranco, D.B. Cell death triggered by polyglutamine-expanded huntingtin in a neuronal cell line is associated with degradation of CREB-binding protein. Hum. Mol. Genet. 12, 1–12 (2003).

    Article  PubMed  Google Scholar 

  99. Bence, N.F., Sampat, R.M. & Kopito, R.R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. McClellan, A.J. & Frydman, J. Molecular chaperones and the art of recognizing a lost cause. Nat. Cell Biol. 3, E51–E53 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Goldberg, A.L. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895–899 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Ciechanover, A. & Brundin, P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Kopito, R.R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10, 524–530 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Ravikumar, B. et al. Inhibitor of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Tanaka, M. et al. Aggresomes formed by α-synuclein and synphilin-1 are cytoprotective. J. Biol. Chem. 279, 4625–4631 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Verhoef, L.G., Lindsten, K., Masucci, M.G. & Dantuma, N.P. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum. Mol. Genet. 11, 2689–2700 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Winklhofer, K.F., Reintjes, A., Hoener, M.C., Voellmy, R. & Tatzelt, J. Geldanamycin restores a defective heat shock response in vivo. J. Biol. Chem. 276, 45160–45167 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Piper, P.W. The Hsp90 chaperone as a promising drug target. Curr. Opin. Investig. Drugs 2, 1606–1610 (2001).

    CAS  PubMed  Google Scholar 

  110. Yamamoto, A., Lucas, J.J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101, 57–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Davidson, B.L. & Paulson, H.L. Molecular medicine for the brain: silencing of disease genes with RNA interference. Lancet Neurol. 3, 145–149 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Miller, V.M. et al. Allele-specific silencing of dominant disease genes. Proc. Natl. Acad. Sci. USA 100, 7195–7200 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Monsonego, A. & Weiner, H.L. Immunotherapeutic approaches to Alzheimer's disease. Science 302, 834–838 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Mattson, M.P. & Chan, S.L. Good and bad amyloid antibodies. Science 301, 1847–1849 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Weiner, H.L. & Selkoe, D.J. Inflammation and therapeutic vaccination in CNS diseases. Nature 420, 879–884 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Tanaka, M. et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat. Med. 10, 148–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Bohrmann, B. et al. Self-assembly of β-amyloid 42 is retarded by small molecular ligands at the stage of structural intermediates. J. Struct. Biol. 130, 232–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Wood, S.J., MacKenzie, L., Maleeff, B., Hurle, M.R. & Wetzel, R. Selective inhibition of Aβ fibril formation. J. Biol. Chem. 271, 4086–4092 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Reixach, N., Crooks, E., Ostresh, J.M., Houghten, R.A. & Blondelle, S.E. Inhibition of β-amyloid-induced neurotoxicity by imidazopyridoindoles derived from a synthetic combinatorial library. J. Struct. Biol. 130, 247–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. May, B.C. et al. Potent inhibition of scrapie prion replication in cultured cells by bis-acridines. Proc. Natl. Acad. Sci. USA 100, 3416–3421 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cordeiro, Y., Lima, L.M., Gomes, M.P., Foguel, D. & Silva, J.L. Modulation of prion protein oligomerization, aggregation, and β-sheet conversion by 4,4'-dianilino-1,1'-binaphthyl-5,5′-sulfonate (bis-ANS). J. Biol. Chem. 279, 5346–5352 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Heiser, V. et al. Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington's disease by using an automated filter retardation assay. Proc. Natl. Acad. Sci. USA 99, 16400–16406 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pollitt, S.K. et al. A rapid cellular FRET assay of polyglutamine aggregation identifies a novel inhibitor. Neuron 40, 685–694 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. John, V., Beck, J.P., Bienkowski, M.J., Sinha, S. & Heinrikson, R.L. Human β-secretase (BACE) and BACE inhibitors. J. Med. Chem. 46, 4625–4630 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Petkova, A.T. et al. A structural model for Alzheimer's β-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. USA 99, 16742–16747 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by NINDS NS16375, NS38144, NS34172, NS38377, the Huntington's Disease Society of America, the Hereditary Disease Foundation, and the High-Q Foundation. We thank the anonymous reviewers for their comments and suggestions. JCT is supported by NINDS NS16375, NS38377 and NIA AG05146.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, C., Poirier, M. Protein aggregation and neurodegenerative disease. Nat Med 10 (Suppl 7), S10–S17 (2004). https://doi.org/10.1038/nm1066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing