Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CD1d function is regulated by microsomal triglyceride transfer protein

Abstract

CD1d is a major histocompatibility complex (MHC) class I–related molecule that functions in glycolipid antigen presentation to distinct subsets of T cells that express natural killer receptors and an invariant T-cell receptor-α chain (invariant NKT cells)1,2,3. The acquisition of glycolipid antigens by CD1d occurs, in part, in endosomes through the function of resident lipid transfer proteins, namely saposins4,5,6,7,8,9,10. Here we show that microsomal triglyceride transfer protein (MTP), a protein that resides in the endoplasmic reticulum of hepatocytes and intestinal epithelial cells (IECs) and is essential for lipidation of apolipoprotein B11,12, associates with CD1d in hepatocytes. Hepatocytes from animals in which Mttp (the gene encoding MTP) has been conditionally deleted, and IECs in which Mttp gene products have been silenced, are unable to activate invariant NKT cells. Conditional deletion of the Mttp gene in hepatocytes is associated with a redistribution of CD1d expression, and Mttp-deleted mice are resistant to immunopathologies associated with invariant NKT cell–mediated hepatitis and colitis. These studies indicate that the CD1d-regulating function of MTP in the endoplasmic reticulum is complementary to that of the saposins in endosomes in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD1d expression after Mttp deletion.
Figure 2: Deletion of Mttp inhibits CD1d-restricted presentation by hepatocytes and α-GalCer-induced hepatitis.
Figure 3: Silencing of Mttp in IECs inhibits CD1d-restricted antigen presentation.
Figure 4: Mttp deletion inhibits oxazolone-induced colitis.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD8+ T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).

    Article  CAS  Google Scholar 

  2. Behar, S.M., Podrebarac, T.A., Roy, C.J., Wang, C.R. & Brenner, M.B. Diverse TCRs recognize murine CD1. J. Immunol. 162, 161–167 (1999).

    CAS  PubMed  Google Scholar 

  3. Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nat. Rev. Immunol. 2, 557–568 (2002).

    Article  CAS  Google Scholar 

  4. De Silva, A.D. et al. Lipid protein interactions: the assembly of CD1d1 with cellular phospholipids occurs in the endoplasmic reticulum. J. Immunol. 168, 723–733 (2002).

    Article  Google Scholar 

  5. Kang, S.J. & Cresswell, P. Calnexin, calreticulin, and Erp57 cooperate in disulfide bond formation in human CD1d heavy chain. J. Biol. Chem. 277, 44838–44844 (2002).

    Article  CAS  Google Scholar 

  6. Prigozy, T.I. et al. Glycolipid antigen processing for presentation by CD1d molecules. Science 291, 664–667 (2001).

    Article  CAS  Google Scholar 

  7. Roberts, T.J. et al. Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment to NKT cells. J. Immunol. 168, 5409–5414 (2002).

    Article  CAS  Google Scholar 

  8. Zhu, D. et al. Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303, 523–527 (2004).

    Article  Google Scholar 

  9. Kant, S.J. & Cresswell, P. Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat. Immunol. 5, 175–181 (2004).

    Google Scholar 

  10. Winau, F. et al. Saposin C is required for lipid presentation by human CD1b. Nat. Immunol. 5, 169–174 (2004).

    Article  CAS  Google Scholar 

  11. Gordon, D.A., Wetterau, J.R. & Gregg, R.E. Microsomal triglyceride transfer protein: a protein complex required for the assembly of lipoprotein particles. Trends Cell. Biol. 5, 317–321 (1995).

    Article  CAS  Google Scholar 

  12. Wetterau, J.R., Combs, K.A., Spinner, S.N. & Joiner, B.J. Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex. J. Biol. Chem. 265, 9800–9807 (1990).

    CAS  PubMed  Google Scholar 

  13. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).

    Article  CAS  Google Scholar 

  14. Nieuwenhuis, E.E. et al. CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat. Med. 8, 588–593 (2002).

    Article  CAS  Google Scholar 

  15. Vincent, M.S., Gumperz, J.E. & Gumperz, M.B. Understanding the function of CD1-restricted T cells. Nat. Immunol. 4, 517–523 (2003).

    Article  CAS  Google Scholar 

  16. Gumperz, J.E. et al. Murine Cd1d-restricted T cell recognition of cellular lipids. Immunity 12, 211–221 (2000).

    Article  CAS  Google Scholar 

  17. Joyce, S. et al. Natural ligand of mouse CD1d1: cellular glycosylphospha-tidylinositol. Science 279, 1541–1544 (1998).

    Article  CAS  Google Scholar 

  18. Park, J.J. et al. Lipid-protein interactions: biosynthetic assembly of CD1 with lipids in the endoplasmic reticulum is evolutionarily conserved. Proc. Natl. Acad. Sci. USA 101, 1022–1026 (2004).

    Article  CAS  Google Scholar 

  19. Atzel, A. & Wetterau, J.R. Mechanism of microsomal triglyceride transfer protein catalyzed lipid transport. Biochemistry 32, 10444–10450 (1993).

    Article  CAS  Google Scholar 

  20. Jamil, H. et al. Microsomal triglyceride transfer protein – specificity of lipid binding and transport. J. Biol. Chem. 270, 6549–6554 (1995).

    Article  CAS  Google Scholar 

  21. Raabe, M. et al. Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. J. Clin. Invest. 103, 1287–1298 (1999).

    Article  CAS  Google Scholar 

  22. Bleicher, P.A. et al. Expression of murine CD1 on gastrointestinal epithelium. Science 250, 679–682 (1990).

    Article  CAS  Google Scholar 

  23. Bjorkegren, J., Beigneux, A., Bergo, M.O., Maher, J.J. & Young, S.G. Blocking the secretion of hepatic very low density lipoproteins renders the liver more susceptible to toxin-induced injury. J. Biol. Chem. 277, 5476–5483 (2002).

    Article  CAS  Google Scholar 

  24. Ralf, K., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  Google Scholar 

  25. Osman, Y. et al. Activation of hepatic NKT cells and subsequent liver injury following administration of α-galactosylceramide. Eur. J. Immunol. 30, 1919–1928 (2000).

    Article  CAS  Google Scholar 

  26. van de Wal, Y. et al. Delineation of a CD1d-restricted antigen presentation pathway associated with human and mouse intestinal epithelial cells. Gastroenterology 124, 1420–1431 (2003).

    Article  CAS  Google Scholar 

  27. Heller, F., Fuss, I.J., Nieuwenhuis, E., Blumberg, R.S. & Strober, W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-cells. Immunity 17, 629–638 (2002).

    Article  CAS  Google Scholar 

  28. Davidson, N.O. & Shelness, G.S. Apolipoprotein B: mRNA editing, lipoprotein assembly, and presecretory degradation. Annu. Rev. Nutr. 20, 169–193 (2000).

    Article  CAS  Google Scholar 

  29. Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science 268, 863–865 (1995).

    Article  CAS  Google Scholar 

  30. Chen, D. et al. Carcinoembryonic antigen-related cellular adhesion molecule 1 isoforms alternatively inhibit and costimulate human T cell function. J. Immunol. 172, 3535–3543 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.S.B. was supported by National Institutes of Health grants DK44319, DK53056 and DK51362; the Harvard Digestive Diseases Center; and the Broad Medical Research Program. A.K. was supported by the Max Kade Foundation. We thank D. Bailey for excellent technical assistance, A. Bendelac for DN32.D3 cells, S. Behar for CD1-restricted T-T hybridomas, H. Ploegh for MHC class I–specific antibodies, D. Meyer for endoplasmic reticulum–specific antibodies, and P. Libby, N. Davidson and A. Bendelac for critical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S Blumberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brozovic, S., Nagaishi, T., Yoshida, M. et al. CD1d function is regulated by microsomal triglyceride transfer protein. Nat Med 10, 535–539 (2004). https://doi.org/10.1038/nm1043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1043

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing