Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470

Abstract

Angiogenesis is crucial for tumor growth. Angiogenesis inhibitors, such as O-(chloracetyl-carbamoyl) fumagillol (TNP-470), are thus emerging as a new class of anticancer drugs. In clinical trials, TNP-470 slowed tumor growth in patients with metastatic cancer. However, at higher doses necessary for tumor regression, many patients experienced neurotoxicity. We therefore synthesized and characterized a water-soluble conjugate of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer, Gly-Phe-Leu-Gly linker and TNP-470. This conjugate accumulated selectively in tumor vessels because of the enhanced permeability and retention (EPR) effect. HPMA copolymer–TNP-470 substantially enhanced and prolonged the activity of TNP-470 in vivo in tumor and hepatectomy models. Polymer conjugation prevented TNP-470 from crossing the blood-brain barrier (BBB) and decreased its accumulation in normal organs, thereby avoiding drug-related toxicities. Treatment with TNP-470 caused weight loss and neurotoxic effects in mice, whereas treatment with the conjugate did not. This new approach for targeting angiogenesis inhibitors specifically to the tumor vasculature may provide a new strategy for the rational design of cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and characterization of HPMA copolymer–TNP-470 conjugate.
Figure 2: TNP-470 and HPMA copolymer–TNP-470 conjugate selectively inhibit endothelial cell proliferation.
Figure 3: Once-weekly administration of HPMA copolymer–TNP-470 conjugate inhibits angiogenesis in liver regeneration model.
Figure 4: HPMA copolymer–TNP-470 inhibits A2058 human melanoma and LLC growth.
Figure 5: HPMA copolymer–TNP-470 conjugate accumulates at higher concentrations in tumors and has a longer half-life in circulation than free TNP-470.
Figure 6: HPMA copolymer–TNP-470 does not affect neurological function.

Similar content being viewed by others

References

  1. Folkman, J. Angiogenesis. in Harrison's Textbook of Internal Medicine 15th ed. (eds. Braunwald, E. et al.) 517–530 (McGraw Hill, New York, 2001).

    Google Scholar 

  2. Volpert, O.V. et al. Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell 2, 473–483 (2002).

    CAS  Google Scholar 

  3. Ingber, D. et al. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348, 555–557 (1990).

    CAS  Google Scholar 

  4. Antoine, N. et al. AGM-1470, a potent angiogenesis inhibitor, prevents the entry of normal but not transformed endothelial cells into the G1 phase of the cell cycle. Cancer Res. 54, 2073–2076 (1994).

    CAS  Google Scholar 

  5. Folkman, J. & Kalluri, R. Tumor angiogenesis. in Cancer Medicine (eds. Kufe, D.W. et al.) 161–194 (B.C. Decker, Hamilton, Ontario, 2003).

    Google Scholar 

  6. Folkman, J. Tumor angiogenesis. in Accomplishments in Cancer Research (eds. Wells, S.J. & Sharp, P.) 32–44 (Lippincott Williams & Wilkins, New York, 1998).

    Google Scholar 

  7. Kudelka, A.P., Verschraegen, C.F. & Loyer, E. Complete remission of metastatic cervical cancer with the angiogenesis inhibitor TNP-470. N. Engl. J. Med. 338, 991–992 (1998).

    CAS  Google Scholar 

  8. Kudelka, A.P. et al. A phase I study of TNP-470 administered to patients with advanced squamous cell cancer of the cervix. Clin. Cancer Res. 3, 1501–1505 (1997).

    CAS  Google Scholar 

  9. Bhargava, P. et al. A Phase I and pharmacokinetic study of TNP-470 administered weekly to patients with advanced cancer. Clin. Cancer Res. 5, 1989–1995 (1999).

    CAS  Google Scholar 

  10. Herbst, R.S. et al. Safety and pharmacokinetic effects of TNP-470, an angiogenesis inhibitor, combined with paclitaxel in patients with solid tumors: evidence for activity in non-small-cell lung cancer. J. Clin. Oncol. 20, 4440–4447 (2002).

    CAS  Google Scholar 

  11. Kim, E.S. & Herbst, R.S. Angiogenesis inhibitors in lung cancer. Curr. Oncol. Rep. 4, 325–333 (2002).

    Google Scholar 

  12. Stadler, W.M. et al. Multi-institutional study of the angiogenesis inhibitor TNP-470 in metastatic renal carcinoma. J. Clin. Oncol. 17, 2541–2545 (1999).

    CAS  Google Scholar 

  13. Logothetis, C.J. et al. Phase I trial of the angiogenesis inhibitor TNP-470 for progressive androgen-independent prostate cancer. Clin. Cancer Res. 7, 1198–1203 (2001).

    CAS  Google Scholar 

  14. Rupnick, M.A. et al. Adipose tissue mass can be regulated through the vasculature. Proc. Natl. Acad. Sci. USA 99, 10730–10735 (2002).

    CAS  Google Scholar 

  15. Schoof, D.D. et al. The influence of angiogenesis inhibitor AGM-1470 on immune system status and tumor growth in vitro. Int. J. Cancer 55, 630–635 (1993).

    CAS  Google Scholar 

  16. Nagabuchi, E., VanderKolk, W.E., Une, Y. & Ziegler, M.M. TNP-470 antiangiogenic therapy for advanced murine neuroblastoma. J. Pediatr. Surg. 32, 287–293 (1997).

    CAS  Google Scholar 

  17. Duncan, R. et al. Polymer-drug conjugates, PDEPT and PELT: basic principles for design and transfer from the laboratory to clinic. J. Control. Release 74, 135–146 (2001).

    CAS  Google Scholar 

  18. Rihova, B. et al. Biocompatibility of N-(2-hydroxypropyl) methacrylamide copolymers containing adriamycin. Immunogenicity, and effect on haematopoietic stem cells in bone marrow in vivo and mouse splenocytes and human peripheral blood lymphocytes in vitro. Biomaterials 10, 335–342 (1989).

    CAS  Google Scholar 

  19. Seymour, L.W., Ulbrich, K., Strohalm, J., Kopecek, J. & Duncan, R. The pharmacokinetics of polymer-bound adriamycin. Biochem. Pharmacol. 39, 1125–1131 (1990).

    CAS  Google Scholar 

  20. Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65, 271–284 (2000).

    CAS  Google Scholar 

  21. Duncan, R., Coatsworth, J.K. & Burtles, S. Preclinical toxicology of a novel polymeric antitumour agent: HPMA copolymer-doxorubicin (PK1). Hum. Exp. Toxicol. 17, 93–104 (1998).

    CAS  Google Scholar 

  22. Satchi-Fainaro, R. Targeting tumour vasculature: Reality or a dream? J. Drug Targeting 10, 529–533 (2002).

    CAS  Google Scholar 

  23. Gianasi, E. et al. HPMA copolymer platinates as novel antitumour agents: in vitro properties, pharmacokinetics and antitumour activity in vivo. Eur. J. Cancer 35, 994–1002 (1999).

    CAS  Google Scholar 

  24. Moulton, K.S. et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc. Natl. Acad. Sci. USA 100, 4736–4741 (2003).

    CAS  Google Scholar 

  25. Greene, A.K. et al. Endothelial-directed hepatic regeneration after partial hepatectomy. Ann. Surg. 237, 530–535 (2003).

    Google Scholar 

  26. Whalen, C.T., Hanson, G.D., Putzer, K.J., Mayer, M.D. & Mulford, D.J. Assay of TNP-470 and its two major metabolites in human plasma by high-performance liquid chromatography-mass spectrometry. J. Chromatogr. Sci. 40, 214–218 (2002).

    CAS  Google Scholar 

  27. Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2, 347–360 (2003).

    CAS  Google Scholar 

  28. Seymour, L.W. et al. Tumour tropism and anti-cancer efficacy of polymer-based doxorubicin prodrugs in the treatment of subcutaneous murine B16F10 melanoma. Br. J. Cancer 70, 636–641 (1994).

    CAS  Google Scholar 

  29. Vasey, P.A. et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin. Cancer Res. 5, 83–94 (1999).

    CAS  Google Scholar 

  30. Dvorak, H.F., Nagy, J.A., Dvorak, J.T. & Dvorak, A.M. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am. J. Pathol. 133, 95–109 (1988).

    CAS  Google Scholar 

  31. Duncan, R., Cable, H.C., Lloyd, J.B., Rejmanova, P. & Kopecek, J. Polymers containing enzymatically degradable bonds, 7. Design of oligopeptide side chain in poly N-(2-hydroxypropyl)methacrylamide copolymers to promote efficient degradation by lysosomal enzymes. Makromol. Chem. 184, 1997–2008 (1984).

    Google Scholar 

  32. Foekens, J.A. et al. Prognostic significance of cathepsins B and L in primary human breast cancer. J. Clin. Oncol. 16, 1013–1021 (1998).

    CAS  Google Scholar 

  33. Strojnik, T., Kos, J., Zidanik, B., Golouh, R. & Lah, T. Cathepsin B immunohistochemical staining in tumor and endothelial cells is a new prognostic factor for survival in patients with brain tumors. Clin. Cancer Res. 5, 559–567 (1999).

    CAS  Google Scholar 

  34. Lah, T.T. et al. Cells producing cathepsins D, B, and L in human breast carcinoma and their association with prognosis. Hum. Pathol. 31, 149–160 (2000).

    CAS  Google Scholar 

  35. Strojnik, T. et al. Cathepsin B and its inhibitor stefin A in brain tumors. Pflugers Arch. 439, R122–R123 (2000).

    CAS  Google Scholar 

  36. Griffith, E.C. et al. Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem. Biol. 4, 461–471 (1997).

    CAS  Google Scholar 

  37. Yeh, J.R., Mohan, R. & Crews, C.M. The antiangiogenic agent TNP-470 requires p53 and p21CIP/WAF for endothelial cell growth arrest. Proc. Natl. Acad. Sci. USA 97, 12782–12787 (2000).

    CAS  Google Scholar 

  38. Zhang, Y., Griffith, E.C., Sage, J., Jacks, T. & Liu, J.O. Cell cycle inhibition by the anti-angiogenic agent TNP-470 is mediated by p53 and p21WAF1/CIP1. Proc. Natl. Acad. Sci. USA 97, 6427–6432 (2000).

    CAS  Google Scholar 

  39. Duncan, R., Cable, H.C., Strohalm, J. & Kopecek, J. Pinocytic capture and exocytosis of rat immunoglobulin IgG-N-(2-hydroxypropyl)methacrylamide copolymer conjugates by rat visceral yolk sacs cultured in vitro. Biosci. Rep. 6, 869–877 (1986).

    CAS  Google Scholar 

  40. Seymour, L.W. et al. N-(2-hydroxypropyl)methacrylamide copolymers targeted to the hepatocyte galactose-receptor: pharmacokinetics in DBA2 mice. Br. J. Cancer 63, 859–866 (1991).

    CAS  Google Scholar 

  41. Francis, G.E., Delgado, C. & Fisher, D. PEG-modified proteins. in Stability of proteins pharmaceuticals (Part B) (eds. Ahem, T.J. & Manning, M.C.) 235–263 (Plenum Press, New York, 1992).

    Google Scholar 

  42. Satchi-Fainaro, R. et al. PDEPT: polymer directed enzyme prodrug therapy II. HPMA copolymer-β-lactamase and HPMA-C-Dox as a second model combination. Bioconjug. Chem. 14, 797–804 (2003).

    CAS  Google Scholar 

  43. Satchi, R., Connors, T.A. & Duncan, R. PDEPT: polymer-directed enzyme prodrug therapy. I. HPMA copolymer-cathepsin B and PK1 as a model combination. Br. J. Cancer 85, 1070–1076 (2001).

    CAS  Google Scholar 

  44. O'Reilly, M.S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    CAS  Google Scholar 

  45. Folkman, J., Haudenschild, C.C. & Zetter, B.R. Long-term culture of capillary endothelial cells. Proc. Natl. Acad. Sci. USA 76, 5217–5221 (1979).

    CAS  Google Scholar 

  46. Auerbach, R., Lewis, R., Shinners, B., Kubai, L. & Akhtar, N. Angiogenesis assays: a critical overview. Clin. Chem. 49, 32–40 (2003).

    CAS  Google Scholar 

  47. Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates (Academic Press, San Diego, 2001).

    Google Scholar 

  48. Waynforth, H.B. Routes and methods of administration, intracerebral injection. in Experimental and Surgical Technique in the Rat vol. 2.9; 34–36 (Academic Press, London, 1980).

    Google Scholar 

  49. Ong, V.S., Stamm, G.E., Menacherry, S. & Chu, S. Quantitation of TNP-470 and its metabolites in human plasma: sample handling, assay performance and stability. J. Chromatogr. B Biomed. Sci. Appl. 710, 173–182 (1998).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Duncan, H. Ringsdorf, C. Barnes and T. Udagawa for helpful discussions; G. Jackson, R. Winter and A. T. Lee for excellent technical assistance; A. Kaipainen and D. Panigrahy for their help with LLC implantation; K. Gullage for photography; and M. Moses, D. Ingber and D. Freedman for critical appraisal of the manuscript. This work was supported by The Fulbright and The Rothschild Foundations, and a grant from the Breast Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judah Folkman.

Ethics declarations

Competing interests

The authors filed a patent application under the PCT (WO 031086382AI) on 23 October 2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satchi-Fainaro, R., Puder, M., Davies, J. et al. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat Med 10, 255–261 (2004). https://doi.org/10.1038/nm1002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1002

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing