Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine

Abstract

The breaking of immune tolerance against autologous angiogenic endothelial cells should be a useful approach for cancer therapy. Here we show that immunotherapy of tumors using fixed xenogeneic whole endothelial cells as a vaccine was effective in affording protection from tumor growth, inducing regression of established tumors and prolonging survival of tumor-bearing mice. Furthermore, autoreactive immunity targeting to microvessels in solid tumors was induced and was probably responsible for the anti-tumor activity. These observations may provide a new vaccine strategy for cancer therapy through the induction of an autoimmune response against the tumor endothelium in a cross-reaction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of protective anti-tumor immunity.
Figure 2: Induction of the therapeutic anti-tumor immunity.
Figure 3: The inhibition of proliferation of endothelial cells in vitro with immunoglobulin.
Figure 4: Adoptive transfer of immunoglobulins in vivo.
Figure 5: In situ observation of microvessels and inhibition of angiogenesis.
Figure 6: Abrogation of the anti-tumor activity and immunoglobulin subclass response to the endothelial cells by the depletion of CD4+ T lymphocytes.
Figure 7: Identification of the possible antigens responsible for the cross-reaction.

Similar content being viewed by others

References

  1. Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82, 4–6 (1990).

    Article  CAS  Google Scholar 

  2. Ferrara, N. & Alitalo, K. Clinical application of angiogenic growth factors and their inhibitors. Nature Med. 5, 1359–1364 (1999)

    Article  CAS  Google Scholar 

  3. Risau, W. Mechanism of angiogenesis. Nature 386, 671 –674 (1997)

    Article  CAS  Google Scholar 

  4. Zetter, B.R. Angiogenesis and tumor metastasis. Annu. Rev. Med. 49, 407–424 (1998)

    Article  CAS  Google Scholar 

  5. Cao, R., et al. Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc. Natl. Acad. Sci. USA 96, 5728–5733 ( 1999)

    Article  CAS  Google Scholar 

  6. Bicknell, R. in Tumor Angiogenesis. (eds. Bicknell, R., Lewis, C.E. & Ferrara. N.) 19–28 (Oxford University Press, Oxford, 1997).

    Google Scholar 

  7. O'Reilly, M.S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997)

    Article  CAS  Google Scholar 

  8. Kerbel. R. S. A cancer therapy resistant to resistant. Nature 390 , 335 (1997)

    Article  CAS  Google Scholar 

  9. Fidler. I.J. & Ellis, L. M. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79, 185–188 (1994).

    Article  CAS  Google Scholar 

  10. Arap, W., Pasqualini, R. & Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377–379 (1998);

    Article  CAS  Google Scholar 

  11. Fan, T.P., Jaggar, R. & Bicknell, R. Controlling the vasculature: angiogenesis, anti-angiogenesis and vascular targeting of gene therapy. Trends Pharmacol. Sci. 16, 57–66 ( 1995)

    Article  CAS  Google Scholar 

  12. Kim, K.J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 362, 841–844 (1993)

    Article  CAS  Google Scholar 

  13. Hanahan D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. J. Natl. Cancer Inst. 88, 1091–1092 ( 1996).

    Article  Google Scholar 

  14. Quinn, T.P., Peters, K.G., De Vries, C., Ferrara, N. & Williams, L.T. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc. Natl. Acad. Sci. USA 90, 7533–7537 (1993)

    Article  CAS  Google Scholar 

  15. Djaffar, I. et al. A new alternative transcript encodes a 60 kDa truncated form of integrin beta 3. Biochem. J. 15, 69– 74 (1994)

    Article  Google Scholar 

  16. Eichmann, A., Marcelle C., Breant, C. Le Douarin, N.M. Molecular cloning of Quek 1 and 2, two quail vascular endothelial growth factor (VEGF) receptor-like molecules . Gene 174, 3–8 (1996)

    Article  CAS  Google Scholar 

  17. Barth, R.J.J., Bock, S.N., Mule, J.J. & Rosenberg, S.A. Unique murine tumor-associated antigens identified by tumor infiltrating lymphocytes. J. Immunol. 144, 1531–1537 (1990).

    CAS  PubMed  Google Scholar 

  18. Boon, T., Coulie, P.G. & Van den Eynde, B. Tumor antigens recognized by T cells. Immunol. Today 18, 267–268 ( 1997).

    Article  CAS  Google Scholar 

  19. Rosenberg, S.A. Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunol. Today 18, 175– 178 (1997).

    Article  CAS  Google Scholar 

  20. Murray, J.S. How the MHC selects Th1/Th2 immunity. Immunol. Today 19, 157–163 (1998).

    Article  CAS  Google Scholar 

  21. Romagnani, S. The Th1/Th2 paradigm. Immunol. Today 18, 263–266 (1997).

    Article  CAS  Google Scholar 

  22. Ohashi, P.S. T cell selection and autoimmunity: flexibility and tuning. Curr. Opin. Immunol. 8, 808–814 (1996).

    Article  CAS  Google Scholar 

  23. Kumar, V., Stellrecht, K. & Sercarz, E. Inactivation of T cell receptor peptide-specific CD4 regulatory T cells induces chronic experimental autoimmune encephalomyelitis (EAE). J. Exp. Med. 184, 1609– 1617 (1996).

    Article  CAS  Google Scholar 

  24. De Silva, H.D., Van Driel, I.R., La Gruta, N., Toh, B.H. & Gleeson, P.A. CD4+ T cells, but not CD8+ T cells, are required for the development of experimental autoimmune gastritis. Immunology 93, 405–408 ( 1998).

    Article  CAS  Google Scholar 

  25. Marconcini, L. et al. C-fos-induced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and in vitro. Proc. Natl. Acad. Sci. USA 96, 9671–9676 (1999).

    Article  CAS  Google Scholar 

  26. Mandriota, S.J. et al. Transforming growth factor β1 down-regulates vascular endothelial growth factor receptor 2/fik-1 expression in vascular endothelial cells. J. Biol. Chem. 271, 11500– 11505 (1996).

    Article  CAS  Google Scholar 

  27. Yeh, C.H., Peng H.C. & Huang T.F. Cytokines modulate integrin αvβ3-mediated human endothelial cell adhesion and calcium signaling. Exp. Cell Res. 251, 57–66 ( 1999).

    Article  CAS  Google Scholar 

  28. Soker, S. et al. Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-endoded domain . J. Biol. Chem. 271, 5761– 5767 (1996).

    Article  CAS  Google Scholar 

  29. Piossek, C. et al. Vascular endothelial growth factor (VEGF) receptor II-derived peptides inhibit VEGF. J. Biol. Chem. 274, 5612–5619 (1999).

    Article  CAS  Google Scholar 

  30. Cheifetz, S. et al. Endoglin is a component of the transforming growth factor-b receptor system in human endothelial cells. J. Biol. Chem. 267, 19027–19030 (1992).

    CAS  Google Scholar 

  31. Jones, N. et al. Identification of Tek/Tie 2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. J. Biol. Chem. 274, 30896–30905 ( 1999).

    Article  CAS  Google Scholar 

  32. Witzenbichler, B. et al. Chemotactic properties of angiopoietin-1 and –2, ligands for the endothelial-specific receptor tyrosine kinase Tie-2. J. Biol. Chem. 273, 18514–18521 (1998).

    Article  CAS  Google Scholar 

  33. Eliceiri, B.P & Cheresh, D.A. The role αv integrins during angiogenesis: insights into potential mechanisms of action and clinical development . J. Clin. Invest. 103, 1227– 1230 (1999).

    Article  CAS  Google Scholar 

  34. Smith, J.W. et al. Integrin avb3-ligand interaction. Identification of a heterodimeric RGD binding Site on the vitronectin receptor. J. Biol. Chem. 265, 2168–2172 (1990).

    CAS  PubMed  Google Scholar 

  35. Lin, E.C., Carron, C.P., Meyer, D.M. & Smith, J.W. A series of function blocking antibodies against the αvβ3 integrin bind allosteric to the ligand binding site and induce ligand dissociation . Cell Adhes. Commmun. 6, 451– 464 (1998).

    Article  CAS  Google Scholar 

  36. Beekhuizen, H. et al. Infection of human vascular endothelial cells with staphylococcus aureus induces hyperadhesiveness for human monocytes and granulocytes. J. Immunol. 158, 774–782 (1997).

    CAS  PubMed  Google Scholar 

  37. Wei, Y.-Q. et al. Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Res. 54, 4952– 4957 (1994).

    CAS  PubMed  Google Scholar 

  38. Pulendran B., et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl. Acad. Sci. USA 96, 1036–1041 ( 1999).

    Article  CAS  Google Scholar 

  39. Schellekens, G. A. et al. Citrulline is an essential constitute of antigenic determinants recognised by rheumatoid arthritis-specific autoantibodies. J. Clin. Invest. 101, 273–281 (1998).

    Article  CAS  Google Scholar 

  40. Horton, H. M. et al. A gene therapy for cancer using intramuscular injection of plasmid DNA encoding interferon α. Proc. Natl. Acad. Sci. USA 96, 1553–1558 ( 1999).

    Article  CAS  Google Scholar 

  41. Pan, Z-K. et al. A recombinant Listeria monocytogenes vaccine expressing a model tumor antigen protects mice against lethal tumor antigen protects mice against lethal tumor cell challenge and causes regression of established tumours. Nature Med. 1, 471– 477 (1995).

    Article  CAS  Google Scholar 

  42. Ortega, S. et al. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc. Natl. Acad. Sci. USA 95, 5672–5677 (1998).

    Article  CAS  Google Scholar 

  43. Wei, Y.-Q. et al. Induction of autologous tumor killing by heat treatment of fresh human tumor cells: involvement of γδ T cells and heat shock protein 70. Cancer Res. 56, 1104– 1110 (1996).

    CAS  PubMed  Google Scholar 

  44. Volpert, O.V. et al. A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1. Proc. Natl. Acad. Sci. USA 95, 6343–6348 (1998).

    Article  CAS  Google Scholar 

  45. Pummerer, C.L, et al. Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J. Clin. Invest. 97, 2057–2062 (1996).

    Article  CAS  Google Scholar 

  46. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Outstanding Young Scientist Foundation of China, the National Natural Sciences Foundation of China, the National 973 Project and the Foundation for University Key Teacher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-quan Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Yq., Wang, Qr., Zhao, X. et al. Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine . Nat Med 6, 1160–1166 (2000). https://doi.org/10.1038/80506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80506

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing