Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma–E2F pathway and with the oncogene Hras transforms primary rat cells

Kaposi sarcoma-associated herpesvirus (KSHV) is involved in the etiopathogenesis of Kaposi sarcoma and certain lymphoproliferative disorders. Open reading frame (ORF) 73 encodes the main immunogenic latent nuclear antigen (LNA-1) of KSHV. LNA-1 maintains the KSHV episome and tethers the viral genome to chromatin during mitosis. In addition, LNA-1 interacts with p53 and represses its transcriptional activity. Here we show that LNA-1 also interacts with the retinoblastoma protein. LNA-1 transactivated an artificial promoter carrying the cell cycle transcription factor E2F DNA-binding sequences and also upregulated the cyclin E (CCNE1) promoter, but not the B-myb (MYBL2) promoter. LNA-1 overcame the flat-cell phenotype induced by retinoblastoma protein in Saos2 cells. In cooperation with the cellular oncogene Harvey rat sarcoma viral oncogene homolog (Hras), LNA-1 transformed primary rat embryo fibroblasts and rendered them tumorigenic. These findings indicate that LNA-1 acts as a transcription co-factor and may contribute to KSHV-induced oncogenesis by targeting the retinoblastoma protein–E2F transcriptional regulatory pathway

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of LNA-1 on E2F-regulated promoters.
Figure 2: LNA-1 and RB1 associate in vivo.
Figure 3: LNA-1 interacts with Rb in vitro.
Figure 4: LNA-1 can ‘rescue’ the RB1-induced flat-cell phenotype in Saos2 cells.
Figure 5: LNA-1 ‘cooperates’ with HRAS to transform primary REF cells.

References

  1. Chang, Y. et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865– 1869 (1994).

    Article  CAS  Google Scholar 

  2. Cesarman, E., Chang, Y., Moore, P.S., Said, J.W. & Knowles, D.M. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 332, 1186–1191 ( 1995).

    Article  CAS  Google Scholar 

  3. Soulier, J. et al. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86, 1276–1280 (1995).

    CAS  PubMed  Google Scholar 

  4. Dupin, N. et al. HHV-8 is associated with a plasmablastic variant of Castleman's disease that is linked to HHV-8 positive plasmablastic lymphoma. Blood 95, 1406–1412 ( 2000).

    CAS  Google Scholar 

  5. Boshoff, C. et al. Kaposi's sarcoma-associated herpesvirus infects endothelial and spindle cells. Nature Med. 1, 1274– 1278 (1995).

    Article  CAS  Google Scholar 

  6. Staskus, K.A. et al. Kaposi's sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J. Virol. 71, 715–719 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sturzl, M. et al. Expression of K13/v-FLIP gene of human herpesvirus 8 and apoptosis in Kaposi's sarcoma spindle cells. J. Natl. Cancer Inst. 20, 1725–1733 (1999).

    Article  Google Scholar 

  8. Dupin, N. et al. Distribution of HHV-8 positive cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc. Natl. Acad. Sci. USA 96, 4546–4551 (1999).

    Article  CAS  Google Scholar 

  9. Staskus, K.A. et al. Cellular tropism and viral interleukin-6 expresion distinguish human herpesvirus 8 involvement in Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. J. Virol. 73, 4181–4187 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Parravicini, C. et al. Differential viral protein expression in Kaposi's sarcoma-associated herpesvirus-infected diseases: Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease. Am. J. Pathol. 156, 743–749 (2000).

    Article  CAS  Google Scholar 

  11. Cesarman, E. et al. In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-associated herpesvirus-like (KSHV) DNA sequences . Blood 86, 2708–2714 (1995).

    CAS  PubMed  Google Scholar 

  12. Boshoff, C. et al. Establishment of a KSHV positive cell line (BCP-1) from peripheral blood and characterizing its growth in vivo. Blood 91, 1671–1679 (1998).

    CAS  PubMed  Google Scholar 

  13. Panyutich, E.A., Said, J.W. & Miles, S.A. Infection of primary dermal microvascular endothelial cells by Kaposi's sarcoma-associated herpesvirus. AIDS 12, 467–472 ( 1998).

    Article  CAS  Google Scholar 

  14. Flore, O. et al. Transformation of primary human endothelial cells by Kaposi's sarcoma-associated herpesvirus. Nature 394, 588–592 (1998).

    Article  CAS  Google Scholar 

  15. Moses, A.V. et al. Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J. Virol. 73, 6892–6902 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Whyte, P. et al. Association between an ancogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334, 124–128 (1988).

    Article  CAS  Google Scholar 

  17. DeCaprio, J.A. et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54, 275–283 (1988).

    Article  CAS  Google Scholar 

  18. Dyson, N., Howley, P.M., Munger, K. & Harlow, E. The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934– 937 (1989).

    Article  CAS  Google Scholar 

  19. Chellappan, S. et al. Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc. Natl. Acad. Sci. USA 89, 4549–4553 ( 1992).

    Article  CAS  Google Scholar 

  20. Rainbow, L. et al. The 222–234 kd nuclear protein (LNA) of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf 73 and a component of the latency-associated nuclear antigen. J. Virol. 71 , 5915–5921 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kellam, P. et al. Identification of a major latent nuclear antigen (LNA-1) in the human herpesvirus 8 (HHV-8) genome. J. Hum. Virol. 1, 19–29 (1997).

    CAS  PubMed  Google Scholar 

  22. Kedes, D.H., Lagunoff, M., Renne, R. & Ganem, D. Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi's sarcoma-associated herpesvirus. J. Clin. Invest. 100 , 2606–2610 (1997).

    Article  CAS  Google Scholar 

  23. Kellam, P. et al. Characterising monoclonal antibodies against KSHV latent nuclear antigen (LNA-1). J. Virol. 73, 5149– 5155 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ballestas, M.E., Chatis, P.A. & Kaye, K.M. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284, 641–644 ( 1999).

    Article  CAS  Google Scholar 

  25. Cotter, M.A. & Robertson, E.S. The latency-associated nuclear antigen tethers the Kaposi's sarcoma-asociated herpesvirus genome to host chromosomes in body-cavity-based lymphoma cells. Virology 264, 254–264 ( 1999).

    Article  CAS  Google Scholar 

  26. Russo, J.J. et al. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl. Acad. Sci. USA 93, 14862 –14867 (1996).

    Article  CAS  Google Scholar 

  27. Zamanian, M. & La Thangue, N.B. Adenovirus E1a prevents the retinoblastoma gene product from repressing the activity of a cellular transcription factor. EMBO J. 11, 2603–2610 (1992).

    Article  CAS  Google Scholar 

  28. Keyomarsi, K., Conte, D. Jr., Toyofuku, W. & Fox, M.P. Deregulation of cyclin E in breast cancer. Oncogene 11, 941–950 ( 1995).

    CAS  PubMed  Google Scholar 

  29. Le Cam, L. et al. Timing of cyclin E gene expression depends on the regulated association of a bipartite repressor element with a novel E2F complex. EMBO J. 18, 1878–1890 ( 1999).

    Article  CAS  Google Scholar 

  30. Hurford, R.K.J., Cobrinik, D., Lee, M.H. & Dyson, N. pRb and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev. 11, 1447–1463 (1997).

    Article  CAS  Google Scholar 

  31. Bennett, J.D., Farlie, P.G. & Watson, R.J. E2F binding is required but not sufficient for repression of B-myb transcription in quiescent fibroblasts. Oncogene 13, 1073–1082 ( 1996).

    CAS  PubMed  Google Scholar 

  32. Lam, E.W. et al. HPV16 E7 oncoprotein deregulates B-myb expression: correlation with targeting of p107/E2F complexes. EMBO J. 13, 871–878 (1994).

    Article  CAS  Google Scholar 

  33. Hinds, P.W. et al. Regulation of retinoblatoma functions by ectopic expression of human cyclins. Cell 70, 993– 1006 (1992).

    Article  CAS  Google Scholar 

  34. Brehm, A. et al. The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J. 18, 2449–2458 (1999).

    Article  CAS  Google Scholar 

  35. Chang, Y. et al. Cyclin encoded by KS herpesvirus. Nature 382, 410 (1996).

    Article  CAS  Google Scholar 

  36. Hamburger, A.W. & Salmon, S.E. Development of a bioassay for human myeloma colony-forming cells. Prog. Clin. Biol. Res. 48, 23–41 ( 1980).

    CAS  PubMed  Google Scholar 

  37. Gao, S.-J. et al. KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signalling pathway. Oncogene 15, 1979– 1985 (1997).

    Article  CAS  Google Scholar 

  38. Bais, C. et al. Kaposi's sarcoma associated herpesvirus (KSHV/HHV-8) G protein-coupled receptor is a viral oncogene and angiogenesis activator. Nature 391, 86–89 ( 1998).

    Article  CAS  Google Scholar 

  39. Lee, H. et al. Deregulation of cell growth by the K1 gene of Kaposi's sarcoma-associated herpesvirus. Nature Med. 4, 435– 440 (1998).

    Article  CAS  Google Scholar 

  40. Friborg Jr, J., Kong, W., Hottiger, M.O. & Nabel, G.J. p53 inhibition by LANA protein of KSHV protects against cell death. Nature 402, 889–894 ( 1999).

    Article  CAS  Google Scholar 

  41. Ludlow, J.W. Interactions between SV40 large-tumor antigen and the growth suppresor proteins pRb and p53. FASEB J. 7, 866– 871 (1993).

    Article  CAS  Google Scholar 

  42. Thomas, J.T., Hubert, W.G., Ruesch, M.N. & Laimins, L.A. Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc. Natl. Acad. Sci. USA 96, 8449– 8454 (1999).

    Article  CAS  Google Scholar 

  43. Boshoff, C. Coupling herpesvirus to angiogenesis: Viral pirates on a cellular sea. Nature 391, 24–25 ( 1998).

    Article  Google Scholar 

  44. Treisman, R., Novak, U., Favaloro, J. & Kamen, R. Transformation of rat cells by an altered polyomavirus genome expressing only the middle-T protein. Nature 292, 595– 600 (1981).

    Article  CAS  Google Scholar 

  45. Radkov, S.A. et al. Epstein-Barr virus EBNA3C represses Cp, the major promoter for EBNA expression, but has no effect on the promoter of the cell gene CD21 . J. Virol. 71, 8552–8562 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by The Cancer Research Campaign, The UK Medical Research Council and Glaxo Wellcome. We thank T. Sharp and J.-B. Rascle for discussions, R. Weiss for critical reading of the manuscript, and D. Bourboulia, M.-Q. Du and N. Phillips for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Boshoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radkov, S., Kellam, P. & Boshoff, C. The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma–E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 6, 1121–1127 (2000). https://doi.org/10.1038/80459

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80459

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing