Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages

Abstract

Infection of macrophage lineage cells is a feature of primate lentivirus replication, and several properties of primate lentiviruses seem to have evolved to promote the infection of macrophages. Here we demonstrate that the accessory gene product Nef induces the production of two CC-chemokines, macrophage inflammatory proteins 1α and 1β, by HIV-1-infected macrophages. Adenovirus-mediated expression of Nef in primary macrophages was sufficient for chemokine induction. Supernatants from Nef-expressing macrophages induced both the chemotaxis and activation of resting T lymphocytes, permitting productive HIV-1 infection. These results indicate a role for Nef in lymphocyte recruitment and activation at sites of virus replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HIV-1 Nef influences CC-chemokine production by HIV-1-infected macrophages.
Figure 2: Nef expression is sufficient for induction of CC-chemokine expression.
Figure 3: Induction of lymphocyte chemotaxis by supernatants from HIV-1-infected and Nef-expressing macrophage cultures.
Figure 4: Induction of lymphocyte activation and 'permissiveness' to HIV-1 infection by Nef-expressing macrophage supernatants.
Figure 5: β chemokine expression associated with SIV-infected macrophages.

Similar content being viewed by others

References

  1. Gartner, S. et al. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233, 215–219 (1986).

    Article  CAS  Google Scholar 

  2. Wiley, C.A., Schrier, R.D., Nelson, J.A., Lampert, P.W. & Oldstone, M.B.A. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc. Natl. Acad. Sci. USA 83, 7089–7093 (1986).

    Article  CAS  Google Scholar 

  3. Koenig, S. et al. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233, 1089–1093 (1986).

    Article  CAS  Google Scholar 

  4. Orenstein, J.M., Fox, C. & Wahl, S.M. Macrophages as a source of HIV during opportunistic infections. Science 276, 1857–1861 ( 1997).

    Article  CAS  Google Scholar 

  5. Veazey, R.S. et al. The gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280, 427–431 (1998).

    Article  CAS  Google Scholar 

  6. Alkhatib, G. et al. CC CKR5: a RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1958 (1996).

    Article  CAS  Google Scholar 

  7. Deng, H. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666 (1996).

    Article  CAS  Google Scholar 

  8. Choe, H. et al. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135 –1148 (1996).

    Article  CAS  Google Scholar 

  9. Dragic, T. et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673 (1996).

    Article  CAS  Google Scholar 

  10. Doranz, B.J. et al. A dual-tropic primary HIV-1 isolate that uses fusin and the βchemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85, 1149–1158 (1996).

    Article  CAS  Google Scholar 

  11. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    Article  CAS  Google Scholar 

  12. Wu, L. et al. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J. Exp. Med. 185, 1681–1691 (1997).

    Article  CAS  Google Scholar 

  13. Wolfs, T.F.W., Zwart, G., Bakker, M. & Goudsmit, J. HIV-1 genomic RNA diversification following sexual and parenteral virus transmission. Virology 189, 103–110 ( 1992).

    Article  CAS  Google Scholar 

  14. Keet, I.P.M. et al. Predictors of rapid progression to AIDS in HIV-1 seroconverters. AIDS 7, 51–57 (1993).

    Article  CAS  Google Scholar 

  15. Zhu, T. et al. Genotypic and phenotypic characterization of HIV-1 in patients with primary infection. Science 261, 1179– 1181 (1993).

    Article  CAS  Google Scholar 

  16. Lewis, P.F. & Emerman, M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J. Virol. 68, 510–516 ( 1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Roe, T., Reynolds, T.C., Yu, G. & Brown, P.O. Integration of murine leukemia virus DNA depends on mitosis. EMBO J. 12, 2099–2108 (1993).

    Article  CAS  Google Scholar 

  18. Weinberg, J.B., Matthews, T.J., Cullen, B.R. & Malim, M.H. Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J. Exp. Med. 174, 1477– 1482 (1991).

    Article  CAS  Google Scholar 

  19. Heinzinger, N. et al. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc. Natl. Acad. Sci. USA 91, 7311– 7315 (1994).

    Article  CAS  Google Scholar 

  20. Fletcher, T.M. et al. Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIMSM. EMBO J. 15, 6155–6165 ( 1996).

    Article  CAS  Google Scholar 

  21. Gallay, P., Hope, T., Chin, D. & Trono, D. HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc. Natl. Acad. Sci. USA 94, 9825–9830 (1997).

    Article  CAS  Google Scholar 

  22. Vodicka, M.A., Koepp, D.M., Silver, P.A. & Emerman, M. HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes Dev. 12, 175– 185 (1998).

    Article  CAS  Google Scholar 

  23. Hirsch, V.M. et al. Vpx is required for dissemination and pathogenesis of SIV SM PBj: evidence of macrophage-dependent viral amplification. Nature Med. 4, 1401–1408 (1998).

    Article  CAS  Google Scholar 

  24. Gruber, M.F., Weih, K.A., Boone, E.J., Smith, P.D. & Clouse, K.A. Endogenous macrophage CSF production is associated with viral replication in HIV-1-infected human monocyte-derived macrophages. J. Immunol. 154, 5528– 5535 (1995).

    CAS  PubMed  Google Scholar 

  25. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  Google Scholar 

  26. van Kooten, C. & Banchereau, J. Functions of CD40 on B cells, dendritic cells and other cells. Curr. Opin. Immunol. 9, 330–337 ( 1997).

    Article  CAS  Google Scholar 

  27. Alderson, M.R. et al. CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J. Exp. Med. 178, 669–674 ( 1993).

    Article  CAS  Google Scholar 

  28. Zack, J.A. The role of the cell cycle in HIV-1 infection. Adv. Exp. Med. Biol. 374, 27–31 ( 1995).

    Article  CAS  Google Scholar 

  29. Sasseville, V.G. et al. Chemokine expression in simian immunodeficiency virus-induced AIDS encephalitis. Am. J. Pathol. 149, 1459 –1467 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kestler III, H.W. et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65, 651–662 (1991).

    Article  CAS  Google Scholar 

  31. Deacon, N.J. et al. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270, 988–991 (1995).

    Article  CAS  Google Scholar 

  32. Kirchhoff, F., Greenough, T.C., Brettler, D.B., Sullivan, J.L. & Desrosiers, R.C. Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N. Engl. J. Med. 332, 228– 232 (1995).

    Article  CAS  Google Scholar 

  33. Garcia, J.V. & Miller, A.D. Serine phosphorylation independent downregulation of cell-surface CD4 by Nef. Nature 350 , 508–511 (1991).

    Article  CAS  Google Scholar 

  34. Collins, K.L., Chen, B.K., Kalams, S.A., Walker, B.D. & Baltimore, D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391, 397–401 (1998).

    Article  CAS  Google Scholar 

  35. Stevenson, M. Pathway to understanding AIDS. Nature Struct. Biol. 3, 303–306 (1996).

    Article  CAS  Google Scholar 

  36. Dairaghi, D.J. et al. Macrophage inflammatory protein-1beta induces migration and activation of human thymocytes. Blood 91, 2905–2913 (1998).

    CAS  PubMed  Google Scholar 

  37. Neote, K., DiGregorio, D., Mak, J.Y., Horuk, R. & Schall, T.J. Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell 72, 415–425 ( 1993).

    Article  CAS  Google Scholar 

  38. Taub, D.D., Conlon, K., Lloyd, A.R., Oppenheim, J.J. & Kelvin, D.J. Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1 alpha and MIP-1 beta. Science 260, 355–358 (1993).

    Article  CAS  Google Scholar 

  39. Ullum, H. et al. Production of β-chemokines in human immunodeficiency virus (HIV) infection: Evidence that high levels of macrophage inflammatory protein-1β are associated with a decreased risk of HIV disease progression. J. Infect. Dis. 177, 331–336 (1998).

    Article  CAS  Google Scholar 

  40. Esser, R., Glienke, W., von Briesen, H., Rubsamen-Waigmann, H. & Andreesen, R. Differential regulation of proinflammatory and hematopoietic cytokines in human macrophages after infection with human immunodeficiency virus. Blood 88, 3474–3481 (1996).

    CAS  PubMed  Google Scholar 

  41. Zou, W. et al. Early cytokine and chemokine gene expression in lymph nodes of macaques infected with simian immunodeficiency virus is predictive of disease outcome and vaccine efficacy. J. Virol. 71, 1227 –1236 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmidtmayerova, H. et al. Human immunodeficiency virus type 1 infection alters chemokine β peptide expression in human monocytes: implications for recruitment of leukocytes into brain and lymph nodes. Proc. Natl. Acad. Sci. USA 93, 700–704 (1996).

    Article  CAS  Google Scholar 

  43. Canque, B. et al. Macrophage inflammatory protein-1alpha is induced by human immunodeficiency virus infection of monocyte-derived macrophages. Blood 87, 2011–2019 ( 1996).

    CAS  PubMed  Google Scholar 

  44. Cocchi, F. et al. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T Cells. Science 270, 1811–1815 (1995).

    Article  CAS  Google Scholar 

  45. Jansson, M. et al. Sensitivity to inhibition by beta-chemokines correlates with biological phenotypes of primary HIV-1 isolates. Proc. Natl. Acad. Sci. USA 93, 15382–15387 (1996).

    Article  CAS  Google Scholar 

  46. Kalter, D.C. et al. Enhanced HIV replication in macrophage colony-stimulating factor-treated monocytes. J. Immunol. 146, 298–306 (1991).

    CAS  PubMed  Google Scholar 

  47. van Kooten, C. & Banchereau, J. Immune regulation by CD40-CD40-l interactions. Front. Biosci. 2, d1–d11 (1997).

    Article  CAS  Google Scholar 

  48. Wahl, L.M. et al. Isolation of human mononuclear cell subsets by counterflow centrifugal elutriation. Cell. Immunol. 85, 373–383 (1984).

    Article  CAS  Google Scholar 

  49. Zhou, L.J. & Tedder, T.F. A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells. Blood 86, 3295–3301 (1995).

    CAS  PubMed  Google Scholar 

  50. McKnight, A. et al. Inhibition of human immunodeficiency virus fusion by a monoclonal antibody to a coreceptor (CXCR-4) is both cell type and virus strain dependent. J. Virol. 71, 1692–1696 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. McGrory, W.J., Bautista, D.S. & Graham, F.L. A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology 163, 614–617 (1988).

    Article  CAS  Google Scholar 

  52. Hitt, M., Bett, A.J., Addison, C.L., Prevec, L. & Graham, F.L. Techniques for human adenovirus vector construction and characterization. Methods Mol. Genet. 7, 13–30 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Thomas, S. Dupont and B. Blais for technical assistance, H.E. Gendelman for assistance with macrophage culture, B. Mellor and K. Toohey for graphics support and N. Bakker for manuscript preparation. This work was supported by National Institutes of Health grants, NS30769 and NS35732 to A.L., AI39445 and HL96008 to E.J., AI37475, HL57880 and RR11589 to M.S. and by funding from the Edward Jenner Institute for Vaccine Research (M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stevenson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swingler, S., Mann, A., Jacqué, JM. et al. HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat Med 5, 997–1003 (1999). https://doi.org/10.1038/12433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing