Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin

Abstract

Pro-opiomelanocortin (POMC)-derived peptides (the melanocortins adrenocorticotropin, α-, β- and γ-melanocyte stimulating hormone; and the endogenous opioid β-endorphin) have a diverse array of biological activities, including roles in pigmentation, adrenocortical function and regulation of energy stores, and in the immune system and the central and peripheral nervous systems1. We show here that mice lacking the POMC-derived peptides have obesity, defective adrenal development and altered pigmentation. This phenotype is similar to that of the recently identified human POMC-deficient patients2. When treated with a stable α-melanocyte-stimulating hormone agonist, mutant mice lost more than 40% of their excess weight after 2 weeks. Our results identify the POMC-null mutant mouse as a model for studying the human POMC-null syndrome, and indicate the therapeutic use of peripheral melanocortin in the treatment of obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of POMC-null mice.
Figure 2: Obesity and altered pigmentation in POMC-null mice.
Figure 3: Adrenal insufficiency in POMC-null mice.
Figure 4: Effect of MSH treatment.

Similar content being viewed by others

References

  1. Smith, A.I. & Funder, J.W. Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocr. Rev. 9, 159–79 ( 1988).

    Article  CAS  Google Scholar 

  2. Krude, H. et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature Genet. 19, 155–157 ( 1998).

    Article  CAS  Google Scholar 

  3. Notake, M. et al. Isolation and characterization of the mouse corticotropin-beta-lipotropin precursor gene and a related pseudogene. FEBS Lett. 156, 67–71 (1983).

    Article  CAS  Google Scholar 

  4. Lu, D. et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone. Nature 371, 799–802 (1994).

    Article  CAS  Google Scholar 

  5. Graham, M., Shutter, J.R., Sarmiento, U., Sarosi, I. & Stark, K.L. Overexpression of Agrt leads to obesity in transgenic mice. Nature Genet. 17, 273–274 (1997).

    Article  CAS  Google Scholar 

  6. Ollmann, M.M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997).

    Article  CAS  Google Scholar 

  7. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131– 141 (1997).

    Article  CAS  Google Scholar 

  8. Kastin, A.J., Redding, T.W., Hall, R., Besser, G.M. & Schally, A.V. Lipid mobilizing hormones of the hypothalamus and pituitary. Pharmacol. Biochem. Behav. 3, 121–126 (1975).

    Article  CAS  Google Scholar 

  9. Richter, W.O. & Schwandt, P. Lipolytic potency of proopiomelanocorticotropin peptides in vitro. Neuropeptides 9, 59– 74 (1987).

    Article  CAS  Google Scholar 

  10. Boston, B.A. & Cone, R.D. Characterization of melanocortin receptor subtype expression in murine adipose tissues and in the 3T3-L1 cell line. Endocrinology 137, 2043– 2050 (1996).

    Article  CAS  Google Scholar 

  11. Jones, B.H. et al. Upregulation of adipocyte metabolism by agouti protein: possible paracrine actions in yellow mouse obesity. Am. J. Physiol. 270, E192–E196 (1996).

    Article  CAS  Google Scholar 

  12. Xue, B., Moustaid, N., Wilkison, W.O. & Zemel, M.B. The agouti gene product inhibits lipolysis in human adipocytes via a Ca2+-dependent mechanism. FASEB J. 12, 1391– 1396 (1998).

    Article  CAS  Google Scholar 

  13. Burchill, S.A., Thody, A.J. & Ito, S. Melanocyte-stimulating hormone, tyrosinase activity and the regulation. J. Endocrinol. 109, 15– 21 (1986).

    Article  CAS  Google Scholar 

  14. Robbins, L.S. et al. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72, 827–34 ( 1993).

    Article  CAS  Google Scholar 

  15. Joerg, H., Fries, H.R., Meijerink, E. & Stranzinger, G.F. Red coat color in Holstein cattle is associated with a deletion in the MSHR gene. Mamm. Genome 7, 317– 318 (1996).

    Article  CAS  Google Scholar 

  16. Estivariz, F.E., Iturriza, F., McLean, C., Hope, J. & Lowry, P.J. Stimulation of adrenal mitogenesis by N-terminal proopiocortin. Nature 297, 419–422 (1982).

    Article  CAS  Google Scholar 

  17. Muglia, L., Jacobson, L., Dikkes, P. & Majzoub, J.A. Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 373, 427–432 (1995).

    Article  CAS  Google Scholar 

  18. Tempel, D.L. & Leibowitz, S.F. Adrenal steroid receptors: interactions with brain neuropeptide systems in relation to nutrient intake and metabolism. J. Neuroendocrinol. 6, 479– 501 (1994).

    Article  CAS  Google Scholar 

  19. Strack, A.M., Horsley, C.J., Sebastian, R.J., Akana, S.F. & Dallman, M.F. Glucocorticoids and insulin: complex interaction on brown adipose tissue. Am. J. Physiol. 268, R1209–R1216 (1995).

    CAS  PubMed  Google Scholar 

  20. Solomon, J. & Mayer, J. The effect of adrenalectomy on the development of the obese- hyperglycemic syndrome in ob-ob mice. Endocrinology 93, 510–512 (1973).

    Article  CAS  Google Scholar 

  21. Tokuyama, K. & Himms-Hagen, J. Adrenalectomy prevents obesity in glutamate-treated mice. Am. J.Physiol. 257, E139–E144 (1989).

    CAS  PubMed  Google Scholar 

  22. Chen, W. et al. Exocrine gland dysfunction in MC5-R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell 91, 789–798 (1997).

    Article  CAS  Google Scholar 

  23. Cody, W.L. et al. Cyclic melanotropins. 9. 7-D-Phenylalanine analogues of the active-site sequence. J. Med. Chem. 28, 583–588 (1985).

    Article  CAS  Google Scholar 

  24. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. in Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1994).

    Google Scholar 

  25. Sambrook, J., Fritsch, E.F. & Maniatis, T. in Molecular Cloning. A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

Download references

Acknowledgements

We thank J. Elliott and S. Bui for their technical assistance, M. Glynn for art work, B. Martin for oligonucleotide synthesis, E.I. Ginns for support of the early phases of the work and M. Davisson for comments on an earlier version of the manuscript. This work was supported by a generous grant from the Board of Trustees of the Eleanor Roosevelt Institute, Denver, Colorado (M.B.B.) and by the Samuel Roberts Noble Foundation, Ardmore, Oklahoma (U.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Hochgeschwender.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaswen, L., Diehl, N., Brennan, M. et al. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 5, 1066–1070 (1999). https://doi.org/10.1038/12506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12506

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing