Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Endocrine gland–derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis

The diversity in growth and morphological characteristics among endothelial cells in different normal tissues and tumors has been long recognized. Yet there has been no clear molecular explanation for such diversity at the level of vascular endothelial growth factor A (VEGF-A) and other established regulators of angiogenesis that are expressed widely and show little tissue selectivity in their angiogenic properties. Endocrine gland–derived VEGF represents the first example of a tissue-specific angiogenic factor, likely to be followed by others.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Restricted expression of EG-VEGF and its receptors.
Figure 2: Differential expression of VEGF and EG-VEGF in adrenal tumors.

Courtesy of F. Peale, G. Frantz and L. Dillard-Telm.

References

  1. Hamilton, W.J., Boyd, J.D. & Mossmann, H.W. Human Embryology (Wiliam & Wilkins, Baltimore, 1962).

    Google Scholar 

  2. Risau, W. & Flamme, I. Vasculogenesis. Ann. Rev. Cell. Dev. Biol. 11, 73–91 (1995).

    Article  CAS  Google Scholar 

  3. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    Article  CAS  Google Scholar 

  4. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–31 (1995).

    Article  CAS  Google Scholar 

  5. Garner, A. in Pathobiology of Ocular Diseases 2nd edn. (eds. Garner, A & Klinworth, G.K) 1625–1710 (Marcel Dekker, New York, 1994).

    Google Scholar 

  6. Gospodarowicz, D., Ferrara, N., Schweigerer, L. & Neufeld, G. Structural characterization and biological functions of fibroblast growth factor. Endocr. Rev. 8, 95–114 (1987).

    Article  CAS  Google Scholar 

  7. Greenblatt, M. & Shubick, P. Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J. Natl. Cancer Inst. 41, 111–124 (1968).

    CAS  PubMed  Google Scholar 

  8. Gospodarowicz, D. & Takral, T.K. Production of a corpus luteum angiogenic factor responsible for proliferation of capillaries and neovascularization of the corpus luteum. Proc. Natl. Acad. Sci. USA 75, 847–851 (1978).

    Article  CAS  Google Scholar 

  9. Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  CAS  Google Scholar 

  10. Keck, P.J. et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246, 1309–1312, 1989.

    Article  CAS  Google Scholar 

  11. Ferrara, N. & Alitalo, K. Clinical applications of angiogenic growth factors and their inhibitors. Nature Med. 5, 1359–1364 (1999).

    Article  CAS  Google Scholar 

  12. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

  13. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  Google Scholar 

  14. Kim, K.J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844 (1993).

    Article  CAS  Google Scholar 

  15. Ferrara, N. VEGF: An update on biological and therapeutic aspects. Curr. Opin. Biotech. 11, 617–624 (2000).

    Article  CAS  Google Scholar 

  16. Yancopoulos, G.D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000).

    Article  CAS  Google Scholar 

  17. Lindhal, P., Johansson, B.E., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    Article  Google Scholar 

  18. Karkkainen, M.J., Makinen, T. & Alitalo, K. Lymphatic endothelium: a new frontier of metastasis research. Nature Cell Biol. 4, E2–5 (2002).

    Article  CAS  Google Scholar 

  19. Simionescu, N. & Simionescu, M. in Cell and tissue biology (ed. Weiss, L.) 355–398 (Urban & Schwarzemberg, Baltimore, 1988).

    Google Scholar 

  20. Aird, W.C. et al. Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J. Cell Biol. 138, 1117–1124 (1997).

    Article  CAS  Google Scholar 

  21. Ruoslahti, E. & Rajotte, D. An address system in the vasculature of normal tissues and tumors. Annu. Rev. Immunol. 18, 813–827 (2000).

    Article  CAS  Google Scholar 

  22. Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K.S. Liver organogenesis promoted by endothelial cells prior to vascular function. Science. 294, 559–563 (2001).

    Article  CAS  Google Scholar 

  23. Lammert, E., Cleaver, O. & Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science. 294, 564–567 (2001).

    Article  CAS  Google Scholar 

  24. Palade, G.E., Simionescu, M. & Simionescu, N. Structural aspects of the permeability of the microvascular endothelium. Acta Physiol. Scand. Suppl. 463, 11–32 (1979).

    CAS  PubMed  Google Scholar 

  25. Stewart, P.A. & Wiley, M.J. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: A study using quail-chick transplantation chimeras. Dev. Biol. 84, 183–192 (1981).

    Article  CAS  Google Scholar 

  26. Dellian, M., Witwer, B.P., Salehi, H.A., Yuan, F. & Jain, R.K. Quantitation and physiological characterization of angiogenic vessels in mice: Effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am. J. Pathol. 149, 59–71 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Roberts, W.G. et al. Host microvasculature influence on tumor vascular morphology and endothelial gene expression. Am. J. Pathol. 153, 1239–1248 (1998).

    Article  CAS  Google Scholar 

  28. LeCouter, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412, 877–884 (2001).

    Article  CAS  Google Scholar 

  29. Joubert, F.J. & Strydom, D.J. Snake venom. The amino acid sequence of protein A from Dendroaspis polylepis polylepis (black mamba) venom. H.-S. Z. Physiol. Chem. 361, 1787–1794 (1980).

    Article  CAS  Google Scholar 

  30. Schweitz, H., Pacaud, P., Diochot., Moinier, D. & Ladzunski, M. MIT(1), a black mamba intestinal toxin with a new and highly potent activity on intestinal contraction. FEBS Lett. 461, 183–188 (1999).

    Article  CAS  Google Scholar 

  31. Boisbouvier, J. et al. A structural homologue of colipase in black mamba venom revealed by NMR floating disulphide bridge analysis. J. Mol. Biol. 283, 205–219 (1998).

    Article  CAS  Google Scholar 

  32. Mollay, C. et al. Bv8, a small protein from frog skin and its homologue from snake venom induce hyperalgesia in rats. Eur. J. Pharmacol. 374, 189–196 (1999).

    Article  CAS  Google Scholar 

  33. Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature. 39,357–362 (1998).

    Article  Google Scholar 

  34. Li, M. et al. Identification of two prokineticin cDNAs: Recombinant proteins potently contract gestrointestinal smooth muscle. Mol. Pharmacol. 59, 692–698 (2001).

    Article  CAS  Google Scholar 

  35. Lin, R., LeCouter, J., Kowalski, J. & Ferrara, N. Characterization of EG-VEGF signaling in adrenal cortex capillary endothelial cells. J. Biol. Chem. 277, 8724–8729 (2002).

    Article  CAS  Google Scholar 

  36. Yang, R. et al. Substantially attenuated hemodynamic responses to Escherichia coli-derived vascular endothelial growth factor given by intravenous infusion compared with bolus injection. J. Pharmacol. Exp. Therap. 284, 103–110 (1998).

    CAS  Google Scholar 

  37. Murohara, T. et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J. Clin. Invest. 101, 2567–2578 (1998).

    Article  CAS  Google Scholar 

  38. Masuda, Y. et al. Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors. Biochem. Biophys. Res. Commun. 293, 396–402 (2002).

    Article  CAS  Google Scholar 

  39. Esser, S. et al. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J. Cell Biol. 140, 947–959 (1998).

    Article  CAS  Google Scholar 

  40. Roberts, W.G. & Palade, G.E. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res. 57, 765–772 (1997).

    CAS  PubMed  Google Scholar 

  41. Bassett, D.L. The changes in the vascular pattern of the ovary of the albino rat during the estrous cycle. Am. J. Anat. 73, 251–278 (1943).

    Article  Google Scholar 

  42. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  Google Scholar 

  43. Neulen, J. et al. Human chorionic gonadotropin-dependent expression of vascular endothelial growth factor/vascular permeability factor in human granulosa cells: Importance in ovarian hyperstimulation syndrome. J. Clin. Endocrinol. Metab. 80, 1967–1671 (1995).

    CAS  PubMed  Google Scholar 

  44. Shifren, J.L., Mesiano, S., Taylor, R.N., Ferrara, N. & Jaffe, R.B. Corticotropin regulates vascular endothelial growth factor expression in human fetal adrenal cortical cells. J. Clin. Endocrinol. Metab. 83, 1342–1347 (1998).

    CAS  PubMed  Google Scholar 

  45. Collin, O. & Bergh, A. Leydig cells secrete factors which increase vascular permeability and endothelial cell proliferation. Int. J. Androl. 19, 221–228 (1996).

    Article  CAS  Google Scholar 

  46. Goldziher, J.W. & Green, J.A. The polycistic ovary. I. Clinical and histologic features. J. Clin. Endocrinol. Metab. 22, 325–332 (1962).

    Article  Google Scholar 

  47. Dunaif, A. & Thomas, A. Current concepts in the polycystic ovary syndrome. Annu. Rev. Med. 52, 401–419 (2001).

    Article  CAS  Google Scholar 

  48. Yang, J.C., Haworth, L., Steinberg, S.M., Rosenberg, S.A. & Novotny, W. A randomized double-blind placebo-controlled trial of bevacizumab (anti-VEGF antibody) demonstrating a prolongation in time to progression in patients with metastatic renal cancer. Abstract #15 Proceedings Annual A.S.C.O. Meeting, 2002.

  49. Miao, H.Q. et al. Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: Functional competition of collapsin-1 and vascular endothelial growth factor-165. J. Cell Biol. 146, 233–242 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hollenberg, M.D. Tyrosine kinase pathways and the regulation of smooth muscle contractility. Trends Pharmacol. Sci. 15, 108–114 (1994).

    Article  CAS  Google Scholar 

  51. Wechselberger, C. et al. The mammalian homologues of frog Bv8 are mainly expressed in spermatocytes. FEBS Lett. 462, 177–181 (1999).

    Article  CAS  Google Scholar 

  52. Cheng, M.Y. et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417, 405–410 (2002).

    Article  CAS  Google Scholar 

  53. Donovan, M.J. et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 127, 4531–4540 (2000).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeCouter, J., Lin, R. & Ferrara, N. Endocrine gland–derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis. Nat Med 8, 913–917 (2002). https://doi.org/10.1038/nm0902-913

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0902-913

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing