Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo

Abstract

Arterial conduits are increasingly preferred for surgical bypass because of inherent functional properties conferred by arterial endothelial cells, especially nitric oxide production in response to physiologic stimuli. Here we tested whether endothelial progenitor cells (EPCs) can replace arterial endothelial cells and promote patency in tissue-engineered small-diameter blood vessels (4 mm). We isolated EPCs from peripheral blood of sheep, expanded them ex vivo and then seeded them on decellularized porcine iliac vessels. EPC-seeded grafts remained patent for 130 days as a carotid interposition graft in sheep, whereas non-seeded grafts occluded within 15 days. The EPC-explanted grafts exhibited contractile activity and nitric-oxide–mediated vascular relaxation that were similar to native carotid arteries. These results indicate that EPCs can function similarly to arterial endothelial cells and thereby confer longer vascular-graft survival. Due to their unique properties, EPCs might have other general applications for tissue-engineered structures and in treating vascular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EPCs from the peripheral blood exhibit the morphologic and phenotypic properties of endothelial cells.
Figure 2: Pre-implantation studies with EPCs seeded on the decellularized matrix.
Figure 3: Long-term patency of vascular grafts seeded with EPCs versus controls.
Figure 4: Post-implantation studies of the vascular grafts.
Figure 5: Vasomotor responsiveness of explanted grafts at 130 days.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Tu, J.V. et al. Use of cardiac procedures and outcomes in elderly patients with myocardial infarction in the United States and Canada. N. Engl. J. Med. 336, 1500–1505 (1997).

    Article  PubMed  Google Scholar 

  2. Weinberg, C.B. & Bell, E. A blood vessel model constructed from collagen and cultured vascular cells. Science 213, 397–399 (1986).

    Article  Google Scholar 

  3. L'Heureux, N., Paquet, S., Labbe, R., Germain, L. & Auger, F.A. A completely biological tissue-engineered human blood vessel. FASEB J. 12, 47–56 (1998).

    Article  PubMed  Google Scholar 

  4. Niklason, L.E. et al. Functional arteries grown in vitro. Science 284, 489–493 (1999).

    Article  PubMed  Google Scholar 

  5. T. Huynh et al. Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nature Biotechnol. 17, 1083–1086 (1999).

    Article  Google Scholar 

  6. Schmidt, C.E. & Baier, J.E. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21, 2215–2231 (2000).

    Article  PubMed  Google Scholar 

  7. Sullivan, S.J. & Brockbank, K.G.M. in Principles of Tissue-Engineering. (eds. Langer, R. & Vacanti, J.) 447–454 (Academic Press, New York, 2000).

    Book  Google Scholar 

  8. Davids, L., Dower, T. & Zilla, P. in Tissue Engineering of Prosthetic Vascular Grafts. (eds. Zilla, P. & Griesler, H.P.) 3–45 (R.G. Landes, Austin, Texas, 1999).

    Google Scholar 

  9. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    Article  PubMed  Google Scholar 

  10. Yin, A. et al. AC133, a novel maker for human hematopoietic stem and progenitor cells. Blood 90, 5002–5012 (1997).

    PubMed  Google Scholar 

  11. Shi, Q. et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 92, 362–367 (1998).

    PubMed  Google Scholar 

  12. Gehling, U.M. et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95, 3106–3112 (2000).

    PubMed  Google Scholar 

  13. Lin, Y., Weisdorf, D.J., Solovey, A. & Hebbel, R.R. Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin Invest. 105, 71–77 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Takahashi, T. et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Med. 5, 434–438 (1999).

    Article  PubMed  Google Scholar 

  15. Asahara, T. et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circul. Res. 85, 221–228 (1999).

    Article  Google Scholar 

  16. Asahara, T. et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 18, 3964–3972 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kalka, C. et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci. USA 97, 3422–3427 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kalka, C. et al. Vascular endothelial growth factor165 gene transfer augments circulating endothelial progenitor cells in human subjects. Circul. Res. 86, 1198–1202 (2000).

    Article  Google Scholar 

  19. Kalka, C. et al. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann. Thorac. Surg. 70, 829–834 (2000).

    Article  PubMed  Google Scholar 

  20. Bhattacharya, V. et al. Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD34+ bone marrow cells. Blood 95, 581–585 (2000).

    PubMed  Google Scholar 

  21. Crosby, J.R. et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circul. Res. 87, 728–730 (2000).

    Article  Google Scholar 

  22. Murohara, T. et al. Transplanted cord blood-derived endothelial precursor cells augment post-natal neovascularization. J. Clin. Invest. 105, 1527–1536 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Peichev, M. et al. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95, 952–958 (2000).

    PubMed  Google Scholar 

  24. Ortenwall, P., Bylock, A., Kjellstrom, B.T. & Risberg, B. Seeding of ePTFE carotid interposition grafts in sheep and dogs: Species-dependent results. Surgery 103, 199–205 (1987).

    Google Scholar 

  25. Kraling, B.M. & Bischoff, J. A simplified method for growth of human microvascular endothelial cells results in decreased senescence and continued responsiveness to cytokines and growth factors. In Vitro Cell. Dev. Biol. 33, 308–315 (1998).

    Article  Google Scholar 

  26. Rosenman, J.E., Kempczinski, R.F., Pearce, W.H. & Silberstein, E.B. Kinetics of endothelial cell seeding. J. Vasc. Surg. 2, 778–784 (1995).

    Article  Google Scholar 

  27. Miyata, T. et al. Delayed exposure to pulsatile shear stress improves retention of human saphenous vein endothelial cells on seeded ePTFE grafts. J. Surg. Res. 50, 485–493 (1991).

    Article  PubMed  Google Scholar 

  28. Keaney Jr, J.F. & Vita, J.A. Atherosclerosis, oxidative stress, and antioxidant protection in endothelium-derived relaxing factor action. Prog. Cardiovasc. Dis. 38, 129–154 (1995).

  29. Quyyumi, A.A. et al. Nitric oxide activity in the human coronary circulation. Impact of risk factors for coronary atherosclerosis. J. Clin. Invest. 95, 1747–1755 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Azuma, H., Ishikawa, M. & Sekizaki, S. Endothelium-dependent inhibition of platelet aggregation. Br. J. Pharmacol. 88, 411–415 (1986).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Radomski, M.W., Palmer, R.M. & Moncada, S. The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem. Biophys. Res. Commun. 148, 1482–1489 (1987).

    Article  PubMed  Google Scholar 

  32. Kubes, P., Kurose, I. & Granger, D.N. NO donors prevent integrin-induced leukocyte adhesion but not P-selectin-dependent rolling in postischemic venules. Am. J. Physiol. 267, H931–937 (1994).

    PubMed  Google Scholar 

  33. Marks, D.S. et al. Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide. J. Clin. Invest. 96, 2630–2638 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Luscher, T.F. et al. Difference between endothelium-dependent relaxation in arterial and in venous coronary bypass grafts. N. Engl. J. Med. 319, 462–467 (1988).

    Article  PubMed  Google Scholar 

  35. Pearson, P.J., Evora, P.R.B. & Schaff, H.V. Bioassay of EDRF from internal mammary arteries: Implications for early and late bypass graft patency. J. Thorac. Surg. 54, 1078–1084 (1992).

    Article  Google Scholar 

  36. Shapira, O.M. et al. Enhanced nitric oxide-mediated vascular relaxation in radial artery compared with internal mammary artery or saphenous vein. Circulation 100, 322–326 (1999).

    Article  Google Scholar 

  37. Shimizu, K. et al. Host bone marrow cells are a source of donor intimal smooth muscle-like cells in the murine aortic transplant arteriopathy. Nature Med. 7, 738–741 (2001).

    Article  PubMed  Google Scholar 

  38. Deutsch, M., Meinhart, J. & Zilla, P. in Tissue Engineering of Prosthetic Vascular Grafts (eds. Zilla, P. & Griesler, H.P.) 180–187 (R.G. Landes, Austin, Texas, 1999).

    Google Scholar 

  39. Shen, B. et al. Homologous up-regulation of KDR/Flk-1 receptor expression by vascular endothelial growth factor in vitro. J. Biol. Chem. 273, 29979–29985 (1998).

    Article  PubMed  Google Scholar 

  40. Shen, B.-Q. et al. Hepatocyte growth factor stimulates the differentiation of human tracheal epithelia in vitro. Am. J. Phys. 272, L1115–1120 (1997).

    Google Scholar 

  41. Dardik, A., Liu, A. & Ballermann, B.J. Chronic in vivo shear stress stimulates endothelial cell retention on prosthetic vascular grafts and reduces subsequent in vivo neointimal thickness. J. Vasc. Biol. 29, 157–167 (1999).

    Google Scholar 

Download references

Acknowledgements

We thank D. Zvagelsky for technical assistance with preparing tissue sections; E. Rhee for providing the arteriograms; Sulzer Carbomedics for providing the vessel bioreactor; K. Gullage and J. Fox for preparation of the figures; and J. Folkman, C. Lowenstein, S. Roth and J. Schneider for critically reading the manuscript. This work was supported by RO1 HL 60490 (J.B.) and RO1 HL 60463 (J.E.M. Jr) from the National Heart, Lung and Blood Institute and the Sarnoff Foundation (S.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce Bischoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaushal, S., Amiel, G., Guleserian, K. et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 7, 1035–1040 (2001). https://doi.org/10.1038/nm0901-1035

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0901-1035

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing