Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits

Abstract

Febrile (fever-induced) seizures affect 3–5% of infants and young children. Despite the high incidence of febrile seizures, their contribution to the development of epilepsy later in life has remained controversial. Combining a new rat model of complex febrile seizures and patch clamp techniques, we determined that hyperthermia-induced seizures in the immature rat cause a selective presynaptic increase in inhibitory synaptic transmission in the hippocampus that lasts into adulthood. The long-lasting nature of these potent alterations in synaptic communication after febrile seizures does not support the prevalent view of the 'benign' nature of early-life febrile convulsions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hyperthermia-induced seizures result in a GABAA receptor-dependent, long-term depression of the discharges of CA1 pyramidal cells.
Figure 2: The GABAA receptor-mediated inhibitory postsynaptic currents in CA1 pyramidal cells is enhanced in rats that experienced seizures.
Figure 3: The frequency, but not the amplitude, of the miniature IPSCs (mIPSCs) is increased in rats that experienced seizures.
Figure 4: The effects of protein kinase blockers on the enhanced amplitude of the evoked IPSCs in CA1 pyramidal cells after hyperthermia-induced seizures.

Similar content being viewed by others

References

  1. Verity, C.M., Butler, N.R. & Golding, J. Febrile convulsions in a national cohort followed up from birth. I—Prevalence and recurrence in the first five years of life. Br. Med. J. 290, 1307– 1310 (1985).

    Article  CAS  Google Scholar 

  2. Shinnar, S. in Current Therapy in Neurological Disease (ed, Johnson, R.T.) (Decker, Philadelphia, 1990).

    Google Scholar 

  3. Shinnar, S. Prolonged febrile seizures and mesial temporal sclerosis. Ann. Neurol. 43, 411–412 ( 1998).

    Article  CAS  Google Scholar 

  4. Abou-Khalil, B., Andermann, E., Andermann, F., Olivier, A. & Quesney, L.F. Temporal lobe epilepsy after prolonged febrile convulsions: excellent outcome after surgical treatment. Epilepsia 34, 878–83 ( 1993).

    Article  CAS  Google Scholar 

  5. Cendes, F. et al. Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy: an MRI volumetric study. Neurology 43, 1083–1087 (1993).

    Article  CAS  Google Scholar 

  6. French, J.A. et al. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann. Neurol. 34 , 774–780 (1993).

    Article  CAS  Google Scholar 

  7. Annegers, J.F., Hauser, W.A., Shirts, S.B. & Kurland, L.T. Factors prognostic of unprovoked seizures after febrile convulsions. N. Engl. J. Med. 316, 493–498 (1987).

    Article  CAS  Google Scholar 

  8. Berg, A.T. & Shinnar, S. Do seizures beget seizures? An assessment of the clinical evidence in humans. J. Clin. Neurophysiol. 14, 102–110 (1997).

    Article  CAS  Google Scholar 

  9. Camfield, P., Camfield, C. & Hirtz, D. in Epilepsy: A Comprehensive Textbook (eds. Engel, J. & Pedley, T.A.) 1305–1309 (Lippincott-Raven, Philadelphia, 1997).

    Google Scholar 

  10. VanLandingham, K.E., Heinz, E.R., Cavazos, J.E. and Lewis, D.V. Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann. Neurol. 43, 413–426 (1998).

    Article  CAS  Google Scholar 

  11. Baram, T.Z., Gerth, A. & Schultz, L. Febrile seizures: an appropriate-aged model suitable for long-term studies. Dev. Brain Res. 98, 265–270 (1997).

    Article  CAS  Google Scholar 

  12. Toth, Z., Xiao-Xin, Y., Haftoglou, S., Ribak, C.E. & Baram, T.Z. Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J. Neurosci. 18, 4285–4294 (1998).

    Article  CAS  Google Scholar 

  13. Capogna, M., Gähwiler, B.H. & Thompson, S.M. Presynaptic enhancement of inhibitory synaptic transmission by protein kinases A and C in the rat hippocampus in vitro. J. Neurosci. 15, 1249–60 (1995).

    Article  CAS  Google Scholar 

  14. Bonci, A. & Williams, J.T. Increased probability of GABA release during withdrawal from morphine. J. Neurosci. 17, 796–803 (1997).

    Article  CAS  Google Scholar 

  15. Doze, V.A., Cohen, G.A. & Madison, D.V. Calcium channel involvement in GABAB receptor-mediated inhibition of GABA release in area CA1 of the rat hippocampus. J. Neurophysiol. 74, 43–53 (1995).

    Article  CAS  Google Scholar 

  16. Kondo, S. & Marty, A. Protein kinase A-mediated enhancement of miniature IPSC frequency by noradrenaline in rat cerebellar stellate cells. J. Physiol. (Lond.) 498, 165– 176 (1997).

    Article  CAS  Google Scholar 

  17. Hjeresen, D.L. & Diaz, J. Ontogeny of susceptibility to experimental febrile seizures in rats. Dev. Psychobiol. 21, 261–275 (1988).

    Article  CAS  Google Scholar 

  18. Jensen, F.E. et al. Acute and chronic increases in excitability in rat hippocampal slices after perinatal hypoxia in vivo. J. Neurophysiol. 79, 73–81 (1998).

    Article  CAS  Google Scholar 

  19. Owens, J., Robbins, C.A., Wenzel, H.J. & Schwartzkroin, P.A. Acute and chronic effects of hypoxia on the developing hippocampus. Ann. Neurol. 41, 187–199 (1997).

    Article  Google Scholar 

  20. Moshe, S.L., Albala, B.J., Ackermann, R.F. & Engel, J. Jr. Increased seizure susceptibility of the immature brain. Brain Res. 283, 81–85 (1983).

    Article  CAS  Google Scholar 

  21. Wasterlain, C.G. Recurrent seizures in the developing brain are harmful. Epilepsia 38, 728–734 ( 1997).

    Article  CAS  Google Scholar 

  22. Smith, K.L., Lee, C.L., Swann, J.W. Local circuit abnormalities in chronically epileptic rats after intrahippocampal tetanus toxin injection in infancy. J. Neurophysiol. 79, 106–116 (1998).

    Article  CAS  Google Scholar 

  23. Jensen, F.E., Holmes, G.L., Lombroso, C.T., Blume, H.K. & Firkusny, I.R. Age-dependent changes in long-term seizure susceptibility and behavior after hypoxia in rats. Epilepsia 33, 971–980 ( 1992).

    Article  CAS  Google Scholar 

  24. Schwartzkroin, P.A. in Electrophysiology of Epilepsy (eds. Schwartzkroin, P.A. & Wheal, H.V.) 389–412 (Academic, New York, 1984).

    Google Scholar 

  25. Holmes, G.L. & Ben-Ari, Y. Seizures in the developing brain: Perhaps not so benign after all. Neuron 21, 1231–1234 (1998).

    Article  CAS  Google Scholar 

  26. Otis, T.S., De Koninck, Y. & Mody, I. Lasting potentiation of inhibition is associated with an increased number of gamma-aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents. Proc. Natl. Acad. Sci. USA 91, 7698–7702 (1994).

    Article  CAS  Google Scholar 

  27. Nusser, Z., Hájos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395, 172– 177 (1998).

    Article  CAS  Google Scholar 

  28. Brooks-Kayal, A.R., Shumate, M.D., Jin, H., Rikhter, T.Y. & Coulter, D.A. Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy. Nature Med. 4, 1166–1172 (1998).

    Article  CAS  Google Scholar 

  29. Buhl, E.H., Otis, T.S. & Mody, I. Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science 271, 369–373 (1996).

    Article  CAS  Google Scholar 

  30. Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).

    Article  CAS  Google Scholar 

  31. Bliss, T.V. & Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361 , 31–39 (1993).

    Article  CAS  Google Scholar 

  32. Ben-Ari, Y. & Represa, A. Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus. Trends Neurosci. 13, 312–8 ( 1990).

    Article  CAS  Google Scholar 

  33. Auger, C. & Marty, A. Heterogeneity of functional synaptic parameters among single release sites. Neuron 19, 139–150 (1997).

    Article  CAS  Google Scholar 

  34. Edwards, F.A., Konnerth, A. & Sakmann, B. Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study. J. Physiol. (Lond.) 430, 213–249 (1990).

    Article  CAS  Google Scholar 

  35. De Koninck, Y. & Mody, I. Noise analysis of miniature IPSCs in adult rat brain slices: properties and modulation of synaptic GABAA receptor channels. J. Neurophysiol. 71, 1318–1335 (1994).

    Article  CAS  Google Scholar 

  36. Nusser, Z., Cull-Candy, S. & Farrant, M. Differences in synaptic GABA(A) receptor number underlie variation in GABA mini amplitude. Neuron 19, 697–709 (1997).

    Article  CAS  Google Scholar 

  37. Weisskopf, M.G., Castillo, P.E., Zalutsky, R.A. & Nicoll, R.A. Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265, 1878–82 (1994).

    Article  CAS  Google Scholar 

  38. Huang, Y.Y., Li, X.C. & Kandel, E.R. cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell 79, 69–79 (1994).

    Article  CAS  Google Scholar 

  39. Komatsu, Y. Age-dependent long-term potentiation of inhibitory synaptic transmission in rat visual cortex. J. Neurosci. 14, 6488 –6499 (1994).

    Article  CAS  Google Scholar 

  40. Wan, Q. et al. Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature 388, 686– 690 (1997).

    Article  CAS  Google Scholar 

  41. Brussaard, A.B. et al. Plasticity in fast synaptic inhibition of adult oxytocin neurons caused by switch in GABA(A) receptor subunit expression. Neuron 19, 1103–1114 ( 1997).

    Article  CAS  Google Scholar 

  42. Korn, H., Oda, Y. & Faber, D.S. Long-term potentiation of inhibitory circuits and synapses in the central nervous system. Proc. Natl. Acad. Sci. USA 89, 440–443 (1992).

    Article  CAS  Google Scholar 

  43. Xie, Z., Yip, S., Morishita, W. & Sastry, B.R. Tetanus-induced potentiation of inhibitory postsynaptic potentials in hippocampal CA1 neurons. Can. J. Physiol. Pharmacol. 73, 1706– 1713 (1995).

    Article  CAS  Google Scholar 

  44. Taubenfeld, S.M., Wiig, K.A., Bear, M.F. & Alberini, C.M. A molecular correlate of memory and amnesia in the hippocampus. Nature Neurosci. 2, 309–310 ( 1999).

    Article  CAS  Google Scholar 

  45. Maccaferri, G. & McBain, C.J. Passive propagation of LTD to stratum oriens-alveus inhibitory neurons modulates the temporoammonic input to the hippocampal CA1 region. Neuron 15, 137–145 (1995).

    Article  CAS  Google Scholar 

  46. McBain, C.J. & Maccaferri, G. Synaptic plasticity in hippocampal interneurons? A commentary. Can. J. Physiol. Pharmacol. 75, 488–94 (1997).

    Article  CAS  Google Scholar 

  47. Liu, X. & Jones, E.G. Alpha isoform of calcium-calmodulin dependent protein kinase II (CAM II kinase-alpha) restricted to excitatory synapses in the CA1 region of rat hippocampus. Neuroreport 8, 1475–1479 (1997).

    Article  CAS  Google Scholar 

  48. Sík, A., Hájos, N., Gulácsi, A., Mody, I. & Freund, T.F. The absence of a major Ca2+ signaling pathway in GABAergic neurons of the hippocampus. Proc. Natl. Acad. Sci. USA 95, 3245–3250 ( 1998).

    Article  Google Scholar 

  49. Hollrigel, G.H. & Soltesz, I. Slow kinetics of miniature inhibitory postsynaptic currents during early postnatal development in granule cells of the dentate gyrus. Journal of Neuroscience 17, 5119–5128 ( 1997).

    Article  CAS  Google Scholar 

  50. Brunson, K. L., Schultz, L. & Baram, T. Z. The in vivo proconvulsant effects of corticotropin releasing hormone in the developing rat are independent of ionotropic glutamate receptor activation. Brain Res. 111, 119 –28 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Ahmadi and R. Zhu for technical assistance. This work was financially supported by NIH (NS35439 to T.Z.B. and NS38580 to I.S.), by UC Systemwide Biotechnology Research and Education Program (BREP-98-02 to T.Z.B. & I.S.) and by the Epilepsy Foundation of America (EFA-24106 to I.S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Soltesz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Baram, T. & Soltesz, I. Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 5, 888–894 (1999). https://doi.org/10.1038/11330

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing