Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A minimal glycine-alanine repeat prevents the interaction of ubiquitinated IκBα with the proteasome: a new mechanism for selective inhibition of proteolysis

Abstract

The Epstein-Barr virus nuclear antigen 1 contains a glycine-alanine repeat that inhibits in cis MHC class l-restricted presentation. We report here that insertion of a minimal glycine-alanine repeat motif in different positions of IκBα protects this NF-κB inhibitor from signal–induced degradation dependent on ubiquitin-proteasome, and decreases its basal turnover in vivo resulting in constitutive dominant-negative mutants. The chimeras are phosphorylated and ubiquitinated in response to tumor necrosis factor α, but are then released from NF-κB and fail to associate with the proteasome. This explains how functionally competent IκBα is protected from proteasomai disruption and identifies the glycine-alanine repeat as a new regulator of proteolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oldstone, M.B. How viruses escape from cytotoxic T lymphocytes: molecular parameters and players. Virology 234, 179–185 (1997).

    Article  CAS  Google Scholar 

  2. Masucci, M.G. & Ernberg, I. Epstein-Barr virus: Adaptation to a life within the immune sytem. Trends Mkrobiol. 2, 125–130 (1994).

    Article  CAS  Google Scholar 

  3. Rickinson, A.B. & Moss, D.J. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu. Rev. Immunol. 15, 405–431 (1997).

    Article  CAS  Google Scholar 

  4. Blake, N. et al. Human CD8(+) T Cell responses to EBV EBNA1-HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 7, 791–802 (1997).

    Article  CAS  Google Scholar 

  5. Falk, K. et al. The role of repetitive DNA sequences in the size variation of Epstein-Barr virus (EBV) nuclear antigens, and the identification of different EBV isolates using RFLP and PCR analysis. J. Gen. Virol. 76, 779–790 (1995).

    Article  CAS  Google Scholar 

  6. Levitskaya, J. et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr Virus nuclear antigen-1. Nature 375, 685–688 (1995).

    Article  CAS  Google Scholar 

  7. Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A. & Masucci, M. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epsein-Barr-virus nuclear antigen 1. Proc. Natl. Acad. Sci USA 94, 12616–12621 (1997).

    Article  CAS  Google Scholar 

  8. Goldberg, A.L., Akopian, T.N., Kisselev, A.F., Lee, D.H. & Rohrwild, M. New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biol. Chem. 378, 131–140 (1997).

    CAS  PubMed  Google Scholar 

  9. Berg, A.A. & Baldwin, A.S.J. The IκB proteins: multifunctional regulators of rel/NF-κB transcription factors. Genet Dev. 7, 2064–2070 (1993).

    Article  Google Scholar 

  10. Brown, K., Park, S., Kanno, T., Franzoso, G. & Siebenlist, U. Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc. Notl. Acad. Sci USA 90, 2532–2536 (1993).

    Article  CAS  Google Scholar 

  11. Henkel, T. et al. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature 365, 182–185 (1993).

    Article  CAS  Google Scholar 

  12. DiDonato, J.A., Mercurio, F. & Karin, M. Phosphorylation of I kappa B alpha precedes but is not sufficient for its dissociation from NF-kappa B. Mol. Cell. Biol. 15, 1302–1311 (1995).

    Article  CAS  Google Scholar 

  13. Jaffray, E., Wood, K.M. & Hay, R.T. Domain organization of I kappa B alpha and sites of interaction with NF-kappa B p65. Mol. Cell. Biol. 15, 2166–2172 (1995).

    Article  CAS  Google Scholar 

  14. Rise, N.R. & Ernst, M.K. In vivo control of NF-kappaB activation by IkappaBalpha. EMBO J. 12, 4685–4695 (1993).

    Article  Google Scholar 

  15. Krappmann, D., Wulczyn, F.G. & Scheidereit, C. Different mechanisms control signal-induced degradation and basal turnover of the NF-kappaB inhibitor IkappaB alpha in vivo. EMBO J. 15, 6716–6726 (1996).

    Article  CAS  Google Scholar 

  16. Wang, C.Y., Mayo, M.W. & Baldwin, A.S.J. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 27A, 784–787 (1997).

    Google Scholar 

  17. Beg, A.A. & Baltimore, D. An essential role for NF-kappaB in preventing TNF-alpha-in-duced cell death. Science 274, 782–784 (1996).

    Article  CAS  Google Scholar 

  18. Van Antwerp, D.J., Martin, S.J., Kafri, T., Green, D.R. & Verma, I.M. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 27A, 787–789 (1996).

    Article  Google Scholar 

  19. Chen, Z. et al. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev. 9, 1586–1597 (1995).

    Article  CAS  Google Scholar 

  20. Brown, K., Gerstberger, S., Carlson, L., Franzoso, G. & Siebenlist, U. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267, 1485–1488(1995).

    Article  CAS  Google Scholar 

  21. Traenckner, E.B. et al. Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. EMBOJ. 14, 2876–2883 (1995).

    Article  CAS  Google Scholar 

  22. Rodriguez, M.S. et al. Identification of lysine residues required for signal-induced ubiquitination and degradation of I kappa B-alpha in vivo. Oncogene 12, 2425–2435 (1996).

    CAS  PubMed  Google Scholar 

  23. Miyamoto, S., Maki, M., Schmitt, M.J., Hatanaka, M. & Verma, I.M. Tumor necrosis factor alpha-induced phosphorylation of I kappa B alpha is a signal for its degradation but not dissociation from NF-kappa B. Proc. Natl. Acad. Sci USA 91, 12740–12744 (1994).

    Article  CAS  Google Scholar 

  24. Lin, Y.C., Brown, K. & Siebenlist, U. Activation of NF-kappa B requires proteolysis of the inhibitor I kappa B-alpha: signal-induced phosphorylation of I kappa B-alpha alone does not release active NF-kappa B. Proc. Natl. Acad. Sci USA 92, 552–556 (1995).

    Article  CAS  Google Scholar 

  25. Finco, T.S., Beg, A.A. & Baldwin, A.S.J. Inducible phosphorylation of I kappa B alpha is not sufficient for its dissociation from NF-kappa B and is inhibited by protease inhibitors. Proc. Natl. Acad. Sci USA 91, 11884–11888 (1994).

    Article  CAS  Google Scholar 

  26. Alkalay, I. et al. Stimulation-dependent I kappa B alpha phosphorylation marks the NF-kappa B inhibitor for degradation via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci USA 92, 10599–10603 (1995).

    Article  CAS  Google Scholar 

  27. Ciechanover, A. The ubiquitin-proteasome proteolytic pathway. Cell 79, 13–21 (1994).

    Article  CAS  Google Scholar 

  28. Yates, J.L., Camiolo, S.M., Ali, S. & Ying, A. Comparison of the EBNA1 proteins of Epstein-Barr virus and herpesvirus papio in sequence and function. Virology 222, 1–13 (1996).

    Article  CAS  Google Scholar 

  29. Thiel, B.L., Guess, K.B. & Viney, C. Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers 41, 703–719 (1997).

    Article  CAS  Google Scholar 

  30. Simmons, A.H., Michal, C.A. & Jelinski, L.W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84–87 (1996).

    Article  CAS  Google Scholar 

  31. Williams, J., Williams, M., Liu, C. & Telling, G. Assessing the role of El A in the differential oncogenicity of group A and group C human adenoviruses. Curr. Top. Microbiol. Immunol. 199, 149–175 (1995).

    CAS  PubMed  Google Scholar 

  32. Lin, L. & Ghosh, S. A glycin-rich region of NF-κB p105 functions as a processing signal for the generation of the p50 subunit. Mol. Cell. Biol. 16, 2248–2254 (1996).

    Article  CAS  Google Scholar 

  33. Harrison, P.M., Bamborough, P., Daggett, V., Prusiner, S.B. & Cohen, F.E. The prion folding problem. Curr. Opin. Struct. Biol. 7, 53–59 (1997).

    Article  CAS  Google Scholar 

  34. Baumeister, W. & Lupas, A. The proteasome. Curr. Opin. Struct. Biol. 7, 273–278 (1997).

    Article  CAS  Google Scholar 

  35. Fisher, E.A. et al. The degradation of apolipoprotein B100 is mediated by the ubiquitin-proteasome pathway and involves heat shock protein 70. J. Biol. Chem. 272, 20427–20434 (1997).

    Article  CAS  Google Scholar 

  36. Lee, D.H., Sherman, M.Y. & Goldberg, A.L. Involvement of the molecular chaperone Ydj1 in the ubiquitin-dependent degradation of short-lived and abnormal proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 4773–4781 (1996).

    Article  CAS  Google Scholar 

  37. Bercovich, B. et al. Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J. Biol. Chem. 272, 9002–9010 (1997).

    Article  CAS  Google Scholar 

  38. DiDonato, J. et al. Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16, 1295–1304 (1996).

    Article  CAS  Google Scholar 

  39. Hendil, K.B., Kristensen, P. & Uerkvitz, W. Human proteasomes analysed with monoclonal antibodies. Biochem. J. 305, 245–252 (1995).

    Article  CAS  Google Scholar 

  40. Devary, Y., Rosette, C., DiDonato, J.A. & Karin, M. NF-kappa B activation by ultraviolet light not dependent on a nuclear signal. Science 261, 1442–1445 (1993).

    Article  CAS  Google Scholar 

  41. Dillner, J. et al. Antibodies against a synthetic peptide identify the Epstein-Barr virus-determined nuclear antigen. Proc. Natl. Acad. Sci USA 81, 4652–4656 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria G. Masucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharipo, A., Imreh, M., Leonchiks, A. et al. A minimal glycine-alanine repeat prevents the interaction of ubiquitinated IκBα with the proteasome: a new mechanism for selective inhibition of proteolysis. Nat Med 4, 939–944 (1998). https://doi.org/10.1038/nm0898-939

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0898-939

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing