Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zinc alters conformation and inhibits biological activities of nerve growth factor and related neurotrophins

Abstract

A role for Zn2+ in a variety of neurological conditions such as stroke, epilepsy and Alzheimer's disease has been postulated. In many instances, susceptible neurons are located in regions rich in Zn2+ where nerve growth factor (NGF) levels rise as a result of insult. Although the interaction of Zn2+ with this neurotrophin has previously been suggested, the direct actions of the ion on NGF function have not been explored. Molecular modeling studies predict that Zn2+ binding to NGF will induce structural changes within domains of this neurotrophin that participate in the recognition of TrkA and p75NTR. We demonstrate here that Zn2+ alters the conformation of NGF, rendering it unable to bind to p75NTR or TrkA receptors or to activate signal transduction pathways and biological outcomes normally induced by this protein. Similar actions of Zn2+ are also observed with other members of the NGF family, suggesting a modulatory role for this metal ion in neurotrophin function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smart, T.G., Xie, X. & Krishek, B.J. Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog. Neurobiol. 42, 393–441 (1994).

    Article  CAS  Google Scholar 

  2. Xie, X. & Smart, T.G. A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission. Nature 349, 521–524 (1991).

    Article  CAS  Google Scholar 

  3. Bush, A.I. et al. Rapid induction of Alzheimer Aβ amyloid formation by zinc. Science 265, 1464–1467 (1993).

    Article  Google Scholar 

  4. Harrison, N.L. & Gibbons, S.J. Zn2+: An endogenous modulator of ligand- and voltage-gated ion channels. Neuropharmacology 33, 935–952 (1994).

    Article  CAS  Google Scholar 

  5. Koh, J.-Y. et al. The role of zinc in selective neuronal death after global cerebral ischemia. Science 272, 1013–1016 (1996).

    Article  CAS  Google Scholar 

  6. Lindvall, O., Kokaia, Z., Bengzon, J., Elmér, E. & Kokaia, M. Neurotrophins and brain insults. Trends Neurosci. 17, 490–499 (1994).

    Article  CAS  Google Scholar 

  7. Levi-Montalcini, R. The nerve growth factor 35 years later. Science 237, 1154–1162 (1987).

    Article  CAS  Google Scholar 

  8. Frade, J.M., Rodríguez-Tébar, A. & Barde, Y.-A. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383, 166–168 (1996).

    Article  CAS  Google Scholar 

  9. Casaccia-Bonnefil, P., Carter, B.D., Dobrowsky, R.T. & Chao, M.V. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383, 716–719 (1996).

    Article  CAS  Google Scholar 

  10. Van der Zee, C.E.E.M., Ross, G.M., Riopelle, R.J. & Hagg, T. Survival of cholinergic forebrain neurons in developing p75NGFR-deficient mice. Science 274, 1729–1732 (1996).

    Article  CAS  Google Scholar 

  11. Chao, M.V. & Hempstead, B.L. p75 and Trk: A two-receptor system. Trends Neurosci. 18, 321–326 (1995).

    Article  CAS  Google Scholar 

  12. McDonald, N.Q. et al. A new protein fold revealed by the 2.3Å resolution crystal structure of nerve growth factor. Nature 354, 411–414 (1991).

    Article  CAS  Google Scholar 

  13. Holland, D.R., Cousens, L.S., Meng, W. & Mathews, B.W. Nerve growth factor in different crystal forms displays structural flexibility and reveals zinc binding sites. J. Mol. Biol. 238, 385–400 (1994).

    Article  Google Scholar 

  14. Bradshaw, R.A. et al. Nerve growth factor: Structure/function relationships. Protein Science 3, 1901–1913 (1994).

    Article  CAS  Google Scholar 

  15. Ibáñez, C.F. Neurotrophic factors: From structure-function studies to designing effective therapeutics. Trends Biotech. 13, 217–227 (1995).

    Article  Google Scholar 

  16. Shih, A., Laramee, G.R., Schmelzer, C.H., Burton, L.E. & Winslow, J.W. Mutagenesis identifies amino-terminal residues of nerve growth factor necessary for trk receptor binding and biological activity. J. Biol. Chem. 269, 27679–27686 (1994).

    CAS  PubMed  Google Scholar 

  17. Shamovsky, I.L., Ross, G.M., Riopelle, R.J. & Weaver, D.F. Theoretical studies on the bioactive conformation of nerve growth factor using VBMC — A novel variable basis Monte Carlo simulated annealing algorithm for peptides. J. Am. Chem. Soc. 118, 9743–9749 (1996).

    Article  CAS  Google Scholar 

  18. Ibáñez, C.F. et al. Disruption of the low affinity receptor-binding site in NGF allows neuronal survival and differentiation by binding to the trk gene product. Cell 69, 329–341 (1992).

    Article  Google Scholar 

  19. Woo, S.B. & Neet, K.E. Characterization of histidine residues essential for receptor binding and activity of nerve growth factor. J. Biol. Chem. 271, 24433–24441 (1996).

    Article  CAS  Google Scholar 

  20. Greene, L.A. & Tischler, A.S. Establishment of a noradrenergic clonal cell line of rat pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73, 2424–2432 (1976).

    Article  CAS  Google Scholar 

  21. Kaplan, D.R., Matin-Zanca, D. & Parada, L.F. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 350, 158–160 (1991).

    Article  CAS  Google Scholar 

  22. Kaplan, D.R., Hempstead, B.L., Martin-Zanca, D., Chao, M.V. & Parada, L.F. The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science 252, 554–558 (1991).

    Article  CAS  Google Scholar 

  23. Zhang, D. et al. Atrolysin C. Protein Data Bank (Brookhaven National Laboratory, Upton, NY), accession code 1ATL.

  24. Sarkar, B. Peptide models for the metal-binding sites of proteins and enzymes. J. Indian Chem. Soc. 59, 1403–1411 (1982).

    CAS  Google Scholar 

  25. Vedani, A., Huhta, D.W. & Jacober, S.P. Metal coordination, H-bond network formation, and protein-solvent interactions in native and complexed human carbonic anhydrase I: A molecular mechanics study. J. Am. Chem. Soc. 111, 4075–4081 (1989).

    Article  CAS  Google Scholar 

  26. Argos, P., Garavito, R.M., Eventoff, W. & Rossmann, M.G. Similarities in active center geometries of zinc-containing enzymes, proteases and dehydrogenases. J. Mol. Biol. 126, 141–158 (1978).

    Article  CAS  Google Scholar 

  27. Kochoyan, M., Keutmann, H.T. & Weiss, M.A. Alternating zinc fingers in the human male-associated protein ZFY: HX3H and HX4H motifs encode a local structural switch. Biochemistry 30, 9396–9402 (1991).

    Article  CAS  Google Scholar 

  28. Green, L.M. & Berg, J.M. A retroviral Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys peptide binds metal ions: Spectroscopic studies and a proposed three-dimensional structure. Proc. Natl, Acad. Sci. USA 86, 4047–4051 (1989).

    Article  CAS  Google Scholar 

  29. Bertini, I., Luchinat, C. & Scozzafava, A. Carbonic anhydrase: An insight into the zinc binding site and into the active cavity through metal substitution. in: Structure and Bonding, Vol. 48, 45–92 (Springer-Verlag, Berlin-Heidelberg, 1982).

    Google Scholar 

  30. Tainer, J.A., Getzoff, E.D., Beem, K.M., Richardson, J.S. & Richardson, D.C. Determination and analysis of the 2Å structure of copper, zinc superoxide dismutase. J. Mol. Biol. 160, 181–217 (1982).

    Article  CAS  Google Scholar 

  31. Vallee, B.L. & Auld, D.S. Active-site zinc ligands and activated H2O of zinc enzymes. Proc. Natl. Acad. Sci. USA 87, 220–224 (1990).

    Article  CAS  Google Scholar 

  32. Sheridan, R.P. & Alien, L.C. The active site electrostatic potential of human carbonic anhydrase. J. Am. Chem. Soc. 103, 1544–1550 (1981).

    Article  CAS  Google Scholar 

  33. Cunningham, B.C., Mulkerrin, M.G. & Wells, J.A. Dimerization of human growth hormone by zinc. Science 253, 545–548 (1991).

    Article  CAS  Google Scholar 

  34. Somers, W., Ulsch, M., De Vos, A.M. & Kossiakoff, A.A. The X-ray structure of a growth hormone-prolactin receptor complex. Nature 372, 478–481 (1994).

    Article  CAS  Google Scholar 

  35. Matthews, D.J. & Wells, J.A. Engineering an interfacial zinc site to increase hormone-receptor affinity. Chem. Biol. 1, 25–30 (1994).

    Article  CAS  Google Scholar 

  36. Dostaler, S.M. et al. Characterization of a distinctive motif of the low molecular weight neurotrophin receptor that modulates NGF-mediated neurite growth. Eur. J. Neurosci. 8, 870–879 (1996).

    Article  CAS  Google Scholar 

  37. Rylett, R.J. & Williams, L.R. Role of neurotrophins in cholinergic-neurone function in the adult and aged CNS. Trends Neurosci. 17, 486–490 (1994).

    Article  CAS  Google Scholar 

  38. Ben-Ari, Y. & Represa, A. Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus. Trends Neurosci. 13, 312–318 (1990).

    Article  CAS  Google Scholar 

  39. Rashid, K. et al. A nerve growth factor peptide retards seizure development and inhibits neuronal sprouting in a rat model of epilepsy. Proc. Natl. Acad. Sci. USA 92, 9495–9499 (1995).

    Article  CAS  Google Scholar 

  40. Lewin, G.R. & Mendell, L.M. Nerve growth factor and nociception. Trends Neurosci. 16, 353–359 (1993).

    Article  CAS  Google Scholar 

  41. Woolf, C.J. & Doubell, T.A. The pathophysiology of chronic pain — increased sensitivity to low threshold Aβ-fibre inputs. Curr. Opin. Neurobiol. 4, 525–534 (1994).

    Article  CAS  Google Scholar 

  42. McMahon, S.B., Bennett, D.L.H., Priestley, J.V. & Shelton, D.L. The biological effects of endogenous nerve growth factor on adult sensory neurons revealed by a trkA-IgG fusion molecule. Nature Med. 1, 774–780 (1994).

    Article  Google Scholar 

  43. Hancock, R.D. & Martell, A.E. Ligand design for selective complexation of metal ions in aqueous solutions. Chem. Rev. 89, 1875–1914 (1989).

    Article  CAS  Google Scholar 

  44. Gregory, D.S., Martin, A.C.R., Cheetham, J.C. & Rees, A.R. The prediction and characterization of metal binding sites in proteins. Protein Eng. 6, 29–35 (1993).

    Article  CAS  Google Scholar 

  45. Brooks, B.R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  46. Dent, A.J., Beyersmann, D., Block, C. & Hasnain, S.S. Environment of zinc sites in 5-aminoaevulinate dehydratase. Physica B 158, 95–96 (1989).

    Article  CAS  Google Scholar 

  47. Robinson, R.C., Radziejewski, C., Stuart, D.I. & Jones, E.Y. Structure of the brain-derived neurotrophic factor/neurotrophin-3 heterodimer. Biochemistry 34, 4139–4146 (1995).

    Article  CAS  Google Scholar 

  48. Sutter, A., Riopelle, R.J., Harris-Warrick, R.M. & Shooter, E.M. Nerve growth factor receptors. J. Biol. Chem. 254, 5972–5982 (1979).

    CAS  PubMed  Google Scholar 

  49. Connolly, D.T., Knight, M.B., Harakas, N.K., Wittwer, A.J. & Feder, J. Determination of the number of endothelial cells in culture using an acid phosphatase assay. Anal. Biochem. 152, 136–140 (1986).

    Article  CAS  Google Scholar 

  50. Ueda, Y., Walsh, E., Nakanishi, H. & Yoshida, K. A colorimetric assay method for the evaluation of neurotrophic activity in vitro . Neurosci. Lett. 165, 203–207 (1994).

    Article  CAS  Google Scholar 

  51. Mesner, P.W., Winters, T.R. & Green, S.H. Nerve growth factor withdrawal-induced cell death in neuronal PC12 cells resembles that in sympathetic neurons. J. Cell Biol. 119, 1669–1680 (1992).

    Article  CAS  Google Scholar 

  52. Batistatou, A. & Greene, L.A. Aurintricarbonic acid rescues PCI 2 cells and sympathetic neurons from cell death caused by nerve growth factor deprivation: Correlation with suppression of endonuclease activity. J. Cell Biol. 115, 461–471 (1991).

    Article  CAS  Google Scholar 

  53. Rukenstein, A., Rydel, R.E. and Greene, L.A. Multiple agents rescue PC1 2 cells from serum-free cell death by translation- and transcription-independent mechanisms. J. Neurosci. 11, 2552–2563 (1991).

    Article  CAS  Google Scholar 

  54. Greene, L.A. Nerve growth factor prevents the death and stimulates neuronal differentiation of clonal PC1 2 pheochromocytoma cells in serum-free medium. J. Cell Biol. 78, 747–755 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, G., Shamovsky, I., Lawrance, G. et al. Zinc alters conformation and inhibits biological activities of nerve growth factor and related neurotrophins. Nat Med 3, 872–878 (1997). https://doi.org/10.1038/nm0897-872

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0897-872

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing