Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vaccination against tuberculosis by DNA injection

Abstract

There are 3 million deaths per annum worldwide due to tuberculosis, and AIDS is compounding the problem. A better vaccine than the live mycobacterium currently in use, bacillus Calmette–Guérin (BCG), is needed. When mice were injected with plasmid DNA encoding a single mycobacterial antigen (65–kDa heat shock protein, hsp65) they made specific cellular and humoral responses to the protein and became immune to subsequent challenge with Mycobacterium tuberculosis. Protection was equivalent to that obtained by vaccinating with live BCG, whereas immunizing with the protein was ineffective. Protection was also obtained with DNA encoding another mycobacterial antigen (36–kDa proline–rich antigen). These results suggest that DNA vaccination might yield improved vaccines to replace BCG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yewdell, J.W. & Bennink, J.R. Cell biology of antigen processing and presentation to major histocompatibility complex class I molecule-restricted T lymphocytes. Adv. Immunol. 52, 1–123 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Silva, C.L. & Lowrie, D.B. A single mycobacterial protein (hsp 65) expressed by a transgenic antigen-presenting cell vaccinates mice against tuberculosis. Immunology 82, 244–248 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Silva, C.L., Silva, M.F., Pietro, R.C.L.R. & Lowrie, D.B. Characterization of T cells that confer a high degree of protective immunity against tuberculosis in mice after vaccination with tumor cells expressing mycobacterial hsp65. Infect. Immun. 64, 2400–2407 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gautier, G., Mehtali, M. & Lathe, R. A ubiquitous mammalian expression vector, pHMG, based on a housekeeping gene promoter. Nucleic Acids Res. 17, 8389 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu, N., Liggitt, D., Liu, Y. & Debs, R. Systemic gene expression after intravenous DNA delivery into adult mice. Science 261, 209–211 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Thole, J.E.R. et al. A major immunogenic 36,000-molecular weight antigen from Mycobacterium leprae contains an immunoreactive region of proline-rich repeats. Infect. Immun. 58, 80–87 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Flynn, J.L. et al. An essential role for interferon-γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. DeLibero, G., Flesch, I. & Kaufmann, S.H.E., Mycobacteria-reactive Lyt-2+ T cell lines. Eur. J. Immunol. 18, 59–66 (1988).

    Article  CAS  Google Scholar 

  9. Orme, I.M. The role of CD8+ T cells in immunity to tuberculosis infection. Trends Microbiol. 1, 77–78 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Muller, I., Cobbold, S., Waldmann, H. & Kauffman, S.H.E. Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt-2+ T cells. Infect. Immun. 55, 2037 (1987).

  11. Jones, R.F. & Wei, W.-Z. PEPMOTIF: A program for locating class I major histocompatibility complex restricted peptides in protein sequences. J. Immunol. Methods 179, 137–138 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Wiltrout, R.H., Brunder, M.J. & Holden, H.T. Variation in selectivity of tumor cell lysis by murine macrophages, macrophage-like cell lines and NK cells. Int. J. Cancer 30, 335–342 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Koga, T. et al. T cells against a bacterial heat shock protein recognize stressed macrophages. Science 245, 1112–1115 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Cox, J.M., Zamb, T.J. & Babiuk, L.A. Bovine herpes virusl: Immune responses in mice and cattle injected with plasmid DNA. J. Virol. 67, 5664–5667 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Xiang, Z.Q. et al. Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology 199, 132–140 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Sedegah, M., Hedstrom, R., Hobart, P. & Hoffman, S.L. Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein. Proc. Natl. Acad. Sci. USA 91, 9866–9870 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu, D. & Liew, F.Y. Genetic vaccination against leishmaniasis. Vaccine 12, 1534–1536 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Donnelly, J.J. et al. Preclinical efficacy of a prototype DNA vaccine: Enhanced protection against antigenic drift in influenza virus. Nature Med. 1, 583–587 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Fynan, E.F. et al. DNA vaccines: A novel approach to immunization. Int. J. Immunopharmac. 17, 79–83 (1995).

    Article  CAS  Google Scholar 

  20. Bothamley, G.H., Festenstein, F. & Newland, A. Protective role for CDS cells in tuberculosis. Lancet 339, 315–316 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Ottenhoff, T.H.M. & Mutis, T. Role of cytotoxic cells in the protective immunity against and immunopathology of intracellular infections. Eur. J. Clin. Invest. 25, 371–377 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Molloy, A., Laochumroonvorapong, P. & Kaplan, G., Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guérin. J. Exp. Med. 180, 1499–1509 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Blanchard, D.K. et al. Role of extracellular adenosine triphosphate in the cytotoxic T-lymphocyte-mediated lysis of antigen presenting cells. Blood 85, 3173–3182 (1995).

    CAS  PubMed  Google Scholar 

  24. Thole, J.E.R. & van der Zee, R. The 65 kD antigen: Molecular studies on a ubiquitous antigen. in Molecular Biology of the Mycobacteria (ed. McFadden, J.) 37–67 (Academic Press, London, UK, 1990).

    Google Scholar 

  25. Young, D.B., Garbe, T., Lathigra, R. & Abu-Zeid, C. Protein antigens: Structure, function and regulation. in Molecular Biology of the Mycobacteria (ed. McFadden, J.) 1–35 (Academic Press, London, UK, 1990).

    Google Scholar 

  26. Andersen, P. Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins. Infect. Immun. 62, 2536–2544 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Robertson, J.S. Safety considerations for nucleic acid vaccines. Vaccine 12, 1526–1528 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Elias, D., Markovits, D., Reshef, T., van der Zee, R. & Cohen, I.R. Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc. Natl. Acad. Sci. USA 87, 1576–1580 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Billingham, M.E.J., Carney, S., Butler, R. & Colston, M.J. A mycobacterial 65-kD heat shock protein induces antigen-specific suppression of adjuvant arthritis, but is not itself arthritogenic. J. Exp. Med. 171, 339–344 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Xu, Q. et al. Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis. Lancet 341, 255–259 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, N.-S. Gene transfer into mammalian somatic cells. Crit. Rev. Biotechnol. 12, 335–356 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Jiao, S. et al. Direct gene transfer into nonhuman primate myofibers in vivo . Hum. Gene Ther. 3, 21–33 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Wolff, J.A., Ludtke, J.J., Acsadi, G., Williams, P. & Jani, A. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum. Mol. Genet. 1, 363–369 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Mehra, V., Sweetser, D. & Young, R.A. Efficient mapping of protein antigenic determinants. Proc. Natl. Acad. Sci. USA 83, 7013–7017 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Walker, K.B., Butler, B. & Colston, M.J. Role of Th-1 lymphocytes in the development of protective immunity against M. leprae . J. Immunol. 184, 1885–1889 (1992).

    Google Scholar 

  36. Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517 (1975).

    Article  CAS  PubMed  Google Scholar 

  37. Towbin, H., Staenelin, T. & Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitro cellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anderson, D.C., Barry, M.E. & Buchanan, T.M. Exact definition of species-specific and cross-reactive epitopes of the 65-kilodalton protein of Mycobacterium leprae using synthetic peptides. J. Immunol. 141, 607–613 (1988).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tascon, R., Colston, M., Ragno, S. et al. Vaccination against tuberculosis by DNA injection. Nat Med 2, 888–892 (1996). https://doi.org/10.1038/nm0896-888

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0896-888

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing