Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats

Abstract

Safety concerns about introducing genetically engineered cells into the body have prevented their use in medical treatments. To solve this problem, we prepared polymeric membrane artificial cells (semipermeable microcapsules) containing genetically engineered live cells from the bacteria Escherichia coli DH5. When given orally, the cells remain at all times in the microcapsules and are finally excreted in the stool. During their passage through the intestine, small molecules like urea diffuse rapidly into the microcapsules and are acted on by the genetically engineered cells. This lowers the high plasma urea level to normal in uremic rats with induced kidney failure, and has exciting implications for the use of this and many other types of genetically engineered cells in a number of medical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Griffin, A.M. & Griffin, H.G., Preface. in Molecular Biology: Current Innovations and Future Trends, part 2. (eds. Griffin, A.M. & Griffin, H.G.) 5–6 (Horizon Scientific Press, Norfolk, England, 1995).

    Google Scholar 

  2. Mange, A.P. Genetic engineering snowballs. Biosdence 34, 642–643 (1984).

    Article  Google Scholar 

  3. Chang, T.M.S. Semipermeable microcapsules. Science 146, 524–525 (1964).

    Article  CAS  Google Scholar 

  4. Chang, T.M.S. Artificial cells. in Encyclopedia of Human Biology, vol. 1. (ed. Dulbecco, R.) 377–383 (Academic Press, San Diego, California, 1991).

    Google Scholar 

  5. Chang, T.M.S. Artificial cells with emphasis on bioencapsulation in biotechnology. Biotechnol. Annu. Rev. 1, 267–295 (1995).

    Article  CAS  Google Scholar 

  6. Charles, S., David, M. & Stacia, M. Control of body fluid, electrolyte, and acid–base balance. in Human Physiology: Foundations and Frontiers. (ed. Deborah, A.) 526–527 (Times-Mirror College Publications, St. Louis, Missouri, 1990).

    Google Scholar 

  7. Asaba, H. et al. Plasma middle molecules in asymptomatic and sick uremic patients. in Middle Molecules in Uremia and Other Diseases. (ed. Klinkmann, H. et al.) 137–141 (International Society for Artificial Organs, Cleveland, Ohio, 1980).

    Google Scholar 

  8. Cohen, B.D. Uremic toxins. in Uremia, an International Conference on Pathogenesis, Diagnosis and Therapy. (eds. Kulte, R., Geoffrey, B. & Benjamin, B.C.) 1–11 (Thieme, Stuttgart, 1972).

    Google Scholar 

  9. Kolff, W.J. Artificial kidney and artificial heart: Future considerations. Int. J. Artif. Org. 13, 404–406 (1990).

    Article  CAS  Google Scholar 

  10. Esposito, R., Carmelo, G. & G. Polyhalides. in Sorbents and their Clinical Applications, (ed. Caramelo, G.) 133–153 (Academic Press, London, 1980).

    Google Scholar 

  11. Kjellstrand, C., Borges, H., Pru, C., Gardner, D. & Fink, D. On the clinical use of microencapsulated zirconium phosphate-urease for the treatment of chronic uremia. Trans. Am. Soc. Artif. Intern. Org. 27, 24–30 (1981).

    CAS  Google Scholar 

  12. Drukker, W., Parsons, P.M. & Mahar, J.F. Replacement of Renal Functions by Dialysis. (Martinus Nijhoff, Boston, 1983).

    Book  Google Scholar 

  13. Friedman, E.A. Future treatment of renal failure. in Strategy in Renal Failure, (ed. Friedman, E.A.) 521–528 (Wiley, New York, 1978).

    Google Scholar 

  14. Sparks, R.E., Saleman, R.M., Meier, P.M., Litt, M.H. & Lindon, O. Binders to remove metabolite from the GI tract. Tram. Am. Soc. Artif. Intern. Org. 18, 458–464 (1972).

    Article  CAS  Google Scholar 

  15. Sparks, R.E. Review of gastrointestinal perfusion in treatment of uremia. Clin. Nephrol. 11, 81–85 (1979).

    CAS  PubMed  Google Scholar 

  16. Walker, J.M., Jacobson, R.L., Stephen, W.J. & Rose, D. The role of adsorbents in the wearable artificial kidney. in Artificial Organs. (ed. Gilchrist, T.) 137–149 (Macmillan Press, London, 1977).

    Google Scholar 

  17. Gu, K.F. & Chang, T.M.S. Conversion of alpha-ketoglutarate into L-glutamic acid with urea as ammonia source using multienzyme system and NAD immobilized by microencapsulation with artificial cell in bioreactor. Biotechnol. Bioeng. 32, 363–368 (1988).

    Article  CAS  Google Scholar 

  18. Gu, K.F. & Chang, T.M.S. Conversion of urea or ammonia into essential amino acids, L-leucine, L-valine and L-isoleucine using artificial cells containing an immobilized multienzyme system and dextran-NAD: Yeast alcohol dehydrogenase for enzyme recycling. J. Biotech. Appl Biochem. 12, 227–236 (1991).

  19. Cattaneo, M. & Chang, T.M.S. The potential of microencapsulated urease-zeolite oral sorbent for the removal of urea in uremia. J. Am. Soc. Artif. Intern. Org. 37, 80–87 (1991).

    CAS  Google Scholar 

  20. Friedman, E.A., Fastcook, J., Beyer, M.M., Rattazzi, T. & Josephson, A.S. Combined oxystarch-charcoal trial in uremia, sorbent induced reduction in serum cholesterol. Kidney Int. 13, S273–S276 (1976).

    Google Scholar 

  21. Agishi, T., Yamashita, N. & Ota, K. Clinical results of direct charcoal hemoperfusion for endogenous and exogenous intoxication. in Hemoperfusion, Part I, Kidney and Liver Support and Detoxification (eds. Sidemen, S. & Chang, T.M.S.) 255–263 (Hemisphere, Washington, DC, 1980).

    Google Scholar 

  22. Prakash, S. & Chang, T.M.S. Microencapsulated genetically engineered E. coli cells containing genes from K. aerogens for urea and ammonia removal. Biomater. Artif. Cells Immobilization Biotechnol 19, 687–697 (1993).

    Google Scholar 

  23. Prakash, S. & Chang, T.M.S. Preparation and in vitro analysis of genetically engineered E. coli DH5 cells, microencapsulated in artificial cells for urea and ammonia removal. Biotechnol. Bioeng. 46, 621–626 (1995).

    Article  CAS  Google Scholar 

  24. Chang, T.M.S. & Prakash, S. Artificial cells and genetically engineered microencapsulated E. coli cells, for urea and ammonia removal. in Methods in Molecular Biology, vol. 63, Expression and Detection of Recombinant Gene, Ch. 75 (ed. Tuan, R.S.) (Humana, Totowa, New Jersey, in the press).

  25. Lim, F. & Sun, A.M. Microencapsulated islets as bioartificial pancreas. Science 210, 908–910 (1980).

    Article  CAS  Google Scholar 

  26. Shian-Soon, P. et al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplant. Lancet 343, 950–951 (1994).

    Article  Google Scholar 

  27. Chang, T.M.S. Biotechnology of artificial cells including application to artificial organs. in Comprehensive Biotechnology: The Principle Applications & Regulation of Biotechnology in Industry, Agriculture, and Medicine, (ed. Young, M.M.) 53–73 (Pergamon, New York, 1985).

    Google Scholar 

  28. Goosen, A.M. & Mattheus, F.A. Research on animal cell culture in microcapsules. Chem. Eng. Educ. 22, 196–200 (1988).

    CAS  Google Scholar 

  29. Demetriou, A.A. & Whiting, J.F. Replacement of liver function in rats by transplantation of microcarriers-attached hepatocytes. Science 233, 1190–1192 (1986).

    Article  CAS  Google Scholar 

  30. Demetriou, A.A. Hepatocyte transplantation. Sci. Am. Sci. Med. 1, 58–67 (1994).

    Google Scholar 

  31. Saarvedra, M.J., Baumann, N., Oung, I., Perman, J. & Yolken, R.H. Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhea and shedding of rotavirus. Lancet 344, 1046–1049 (1995).

    Article  Google Scholar 

  32. Setala, K., Heinonen, H. & Schreck-Purla, I. Ingestion of lyophilized soil bacteria for alleviation of uremic symptoms. IRCS Med. Sci. Nephrol. Urol. 73 (10–97), 35 (1973).

    Google Scholar 

  33. Setala, K., Heinonen, H. & Schreck-Purla, I. Uremic waste recovery. Proc. Eur. Dial. Transplant Assoc. 9, 514–520 (1972).

    CAS  PubMed  Google Scholar 

  34. Mobley, H.L. & Haussinger, R.P. Microbial ureases: Significance, regulation, and molecular characterization. Microbiol. Rev. 53, 85–108 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Scoot, B., Mulrooney, H., Stuart, P. & Haussinger, R.P. Regulation of gene expression and cellular localization of cloned K. aerogens urease . J. Gen. Microbiol. 135, 1769–1776(1989).

    Google Scholar 

  36. Sambrook, J., Fritsch, E.F. & Maniatis, T. T. Molecular Cloning: A Laboratory Manual, 2nd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  37. Marincs, F. & White, D.W.R. Immobilization of E. coli expressing the lux gene of Xenorhabdus luminescence . Appl. Environ. Microbiol. 60, 3862–3863 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Symmour, A.C. & Philip, P.C. Colorimetric determination of carbamylamino acids and related compounds. J. Biol. Chem. 209, 145 (1954).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, S., Chang, T. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat Med 2, 883–887 (1996). https://doi.org/10.1038/nm0896-883

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0896-883

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing