Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signaling through OX40 (CD134) breaks peripheral T-cell tolerance

Abstract

Peripheral T-cell tolerance is a mechanism to limit autoimmunity, but represents a major obstacle in diseases such as cancer. Tolerance is due to limited accumulation of antigen-specific T cells accompanied by functional hypo-responsiveness, and is induced by antigen encounter in a non-inflammatory environment. In contrast to advances in preventing induction of T-cell tolerance, there has been little progress in defining targets to reverse established tolerance. Here we show that signals from a single dose of an agonistic antibody against OX40 (CD134, a member of the tumor necrosis-factor family of receptors) can break an existing state of tolerance in the CD4+ T-cell compartment. OX40 signals promote T-cell expansion after the hypo-responsive phenotype is induced and restore normal functionality. These data highlight the potent costimulatory capacity of OX40, and indicate OX40 as a target for therapeutic intervention in a variety of related diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tolerance induction with soluble antigen.
Figure 2: OX40 signals, provided at the time of soluble antigen exposure, promote T-cell expansion and prevent induction of hypo-responsiveness.
Figure 3: Restoration of T-cell numbers and normal function by OX40 signals provided after the induction of hypo-responsiveness.
Figure 4: Anti-OX40 reverses tolerance under conditions of limited inflammation.
Figure 5: OX40 signals allow expansion of hypo-responsive and unresponsive T cells in tolerant mice.
Figure 6: Anti-OX40 reverses the tolerant state in AE7 Th1 clones.

Similar content being viewed by others

References

  1. Dresser, D.W. & Mitchison, N.A. The mechanism of immunological paralysis. Adv. Immunol. 8, 129–181 (1968).

    Article  CAS  Google Scholar 

  2. Bretscher, P. & Cohn, M. A theory of self-nonself discrimination. Science 169, 1042–1049 (1970).

    Article  CAS  Google Scholar 

  3. Jenkins, M.K. & Schwartz, R.H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med. 165, 302–319 (1987).

    Article  CAS  Google Scholar 

  4. Schwartz, R.H. Acquisition of immunologic self-tolerance. Cell 57, 1073–1081 (1989).

    Article  CAS  Google Scholar 

  5. DeSilva, D.R., Urdahl, K.B. & Jenkins, M.K. Clonal anergy is induced in vitro by T cell receptor occupancy in the absence of proliferation. J. Immunol. 147, 3261–3267 (1991).

    CAS  PubMed  Google Scholar 

  6. Schwartz, R.H. T cell clonal anergy. Curr. Opin. Immunol. 9, 351–357 (1997).

    Article  CAS  Google Scholar 

  7. Harding, F.A., McArthur, J.G., Gross, J.A., Raulet, D.H. & Allison, J.P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356, 607–609 (1992).

    Article  CAS  Google Scholar 

  8. Boussiotis, V.A., Freeman, G.J., Gray, G., Gribben, J. & Nadler, L.M. B7 but not intercellular adhesion molecule-1 costimulation prevents the induction of human alloantigen-specific tolerance. J. Exp. Med. 178, 1753–1763 (1993).

    Article  CAS  Google Scholar 

  9. Perez, V.L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).

    Article  CAS  Google Scholar 

  10. Chambers, C.A., Sullivan, T.J. & Allison, J.P. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 7, 885–895 (1997).

    Article  CAS  Google Scholar 

  11. Sotomayor, E.M. et al. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nature Med. 5, 780–787 (1999).

    Article  CAS  Google Scholar 

  12. Gramaglia, I., Weinberg, A.D., Lemon, M. & Croft, M. OX40 Ligand: A potent costimulatory molecule for sustaining primary CD4 T cell responses. J. Immunol. 161, 6510–6517 (1998).

    CAS  PubMed  Google Scholar 

  13. Akiba, H. et al. CD28-independent costimulation of T cells by OX40 ligand and CD70 on activated B cells. J. Immunol. 162, 7058–7066 (1999).

    CAS  PubMed  Google Scholar 

  14. Gramaglia, I. et al. The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J. Immunol. 165, 3043–3050 (2000).

    Article  CAS  Google Scholar 

  15. Calderhead, D.M. et al. Cloning of mouse Ox40: A T-cell activation marker that may mediate T-B cell interactions. J. Immunol. 151, 5261–5271 (1993).

    CAS  PubMed  Google Scholar 

  16. Godfrey, W.R., Fagnoni, F.F., Harara, M.A., Buck, D. & Engleman, E.G. Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. J. Exp. Med. 180, 757–762 (1994).

    Article  CAS  Google Scholar 

  17. Kopf, M. et al. OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 11, 699–708 (1999).

    Article  CAS  Google Scholar 

  18. Chen, A.I. et al. Ox40-ligand has a critical costimulatory role in dendritic cell:T cell interactions. Immunity 11, 689–698 (1999).

    Article  CAS  Google Scholar 

  19. Murata, K. et al. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J. Exp. Med. 191, 365–374 (2000).

    Article  CAS  Google Scholar 

  20. Maxwell, J., Weinberg, A.D., Prell, R.A. & Vella, A.T. Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J. Immunol. 164, 107–112 (2000).

    Article  CAS  Google Scholar 

  21. Croft, M., Joseph, S.B. & Miner, K.T. Partial activation of naive CD4 T cells and tolerance induction in response to peptide presented by resting B cells. J. Immunol. 159, 3257–3265 (1997).

    CAS  PubMed  Google Scholar 

  22. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA- based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell. Biol. 76, 34–40. (1998).

    Article  CAS  Google Scholar 

  23. Kearney, E.R., Pape, K.A., Loh, D.Y. & Jenkins, M.K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

    Article  CAS  Google Scholar 

  24. Al-Shamkhani, A. et al. OX40 is differentially expressed on activated rat and mouse T cells and is the sole receptor for the OX40 ligand. Eur. J. Immunol. 26, 1695–1699 (1996).

    Article  CAS  Google Scholar 

  25. Schwartz, R.H. A cell culture model for T lymphocyte clonal anergy. Science 248, 1349–1356 (1990).

    Article  CAS  Google Scholar 

  26. Jenkins, M.K., Chen, C.A., Jung, G., Mueller, D.L. & Schwartz, R.H. Inhibition of antigen-specific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J. Immunol. 144, 16–22 (1990).

    CAS  PubMed  Google Scholar 

  27. Ria, F., Chan, B.M., Scherer, M.T., Smith, J.A. & Gefter, M.L. Immunological activity of covalently linked T-cell epitopes. Nature 343, 381–383 (1990).

    Article  CAS  Google Scholar 

  28. Romball, C.G. & Weigle, W.O. In vivo induction of tolerance in murine CD4+ cell subsets. J. Exp. Med. 178, 1637–1644 (1993).

    Article  CAS  Google Scholar 

  29. Aichele, P., Brduscha-Riem, K., Zinkernagel, R.M., Hengartner, H. & Pircher, H. T cell priming versus T cell tolerance induced by synthetic peptides. J. Exp. Med. 182, 261–266 (1995).

    Article  CAS  Google Scholar 

  30. Pape, K.A., Merica, R., Mondino, A., Khoruts, A. & Jenkins, M.K. Direct evidence that functionally impaired CD4+ T cells persist in vivo following induction of peripheral tolerance. J. Immunol. 160, 4719–4729 (1998).

    CAS  PubMed  Google Scholar 

  31. Stuber, E., Neurath, M., Calderhead, D., Fell, H.P. & Strober, W. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 2, 507–521 (1995).

    Article  CAS  Google Scholar 

  32. Weinberg, A.D. et al. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J. Immunol. 164, 2160–2169 (2000).

    Article  CAS  Google Scholar 

  33. Garza, K.M. et al. Role of antigen-presenting cells in mediating tolerance and autoimmunity. J. Exp. Med. 191, 2021–2027 (2000).

    Article  CAS  Google Scholar 

  34. Shrikant, P., Khoruts, A. & Mescher, M.F. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity 11, 483–493 (1999).

    Article  CAS  Google Scholar 

  35. Hurwitz, A.A., Yu, T.F., Leach, D.R. & Allison, J.P. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc. Natl. Acad. Sci. USA 95, 10067–10071 (1998).

    Article  CAS  Google Scholar 

  36. Leach, D.R., Krummel, M.F. & Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  Google Scholar 

  37. Schwartz, R.H. Models of T cell anergy: is there a common molecular mechanism? J. Exp. Med. 184, 1–8 (1996).

    Article  CAS  Google Scholar 

  38. Fields, P.E., Gajewski, T.F. & Fitch, F.W. Blocked Ras activation in anergic CD4+ T cells. Science 271, 1276–1278 (1996).

    Article  CAS  Google Scholar 

  39. Li, W., Whaley, C.D., Mondino, A. & Mueller, D.L. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T cells. Science 271, 1272–1276 (1996).

    Article  CAS  Google Scholar 

  40. Kang, S.M. et al. Transactivation by AP-1 is a molecular target of T cell clonal anergy. Science 257, 1134–1138 (1992).

    Article  CAS  Google Scholar 

  41. Sundstedt, A. et al. In vivo anergized CD4+ T cells express perturbed AP-1 and NF-κB transcription factors. Proc. Natl. Acad. Sci. USA 93, 979–984 (1996).

    Article  CAS  Google Scholar 

  42. Boussiotis, V.A. et al. p27kip1 functions as an anergy factor inhibiting interleukin 2 transcription and clonal expansion of alloreactive human and mouse helper T lymphocytes. Nature Med 6, 290–297 (2000).

    Article  CAS  Google Scholar 

  43. Arch, R.H. & Thompson, C.B. 4-1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor κB. Mol. Cell. Biol. 18, 558–565 (1998).

    Article  CAS  Google Scholar 

  44. Kawamata, S., Hori, T., Imura, A., Takaori-Kondo, A. & Uchiyama, T. Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2- and TRAF5-mediated NF-κB activation. J. Biol. Chem. 273, 5808–5814 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to M.C. from the NIH (AI42944) and the Concern Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Croft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal-Pakala, P., Gebre-Hiwot Jember, A. & Croft, M. Signaling through OX40 (CD134) breaks peripheral T-cell tolerance. Nat Med 7, 907–912 (2001). https://doi.org/10.1038/90942

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing