Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A B-cell mitogen from a pathogenic trypanosome is a eukaryotic proline racemase

Abstract

Lymphocyte polyclonal activation is a generalized mechanism of immune evasion among pathogens. In a mouse model of Trypanosoma cruzi infection (American trypanosomiasis), reduced levels of polyclonal lymphocyte responses correlate with resistance to infection and cardiopathy. We report here the characterization of a parasite protein with B-cell mitogenic properties in culture supernatants of infective forms, the cloning of the corresponding gene and the analysis of the biological properties of its product. We characterized the protein as a co-factor-independent proline racemase, and show that its expression as a cytoplasmic and/or membrane-associated protein is life-stage specific. Inhibition studies indicate that availability of the racemase active site is necessary for mitogenic activity. This is the first report to our knowledge of a eukaryotic amino acid racemase gene. Our findings have potential consequences for the development of new immune therapies and drug design against pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A 45-kDa B-cell polyclonal activator isolated from parasite culture supernatants.
Figure 2: Homology between the Tc45 protein and the bacterial proline racemases, and the genomic organization and transcription of the Tc45 gene.
Figure 3: Characterization of rTcPA45 mitogenic activity.
Figure 4: rTcPA45 is a proline racemase.
Figure 5: Differential expression of rTcPA45 protein in the parasite.
Figure 6: Correlation between mitogenic and racemase activities.

Similar content being viewed by others

References

  1. Reina-San-Martin, B., Cosson, A. & Minoprio, P. Lymphocyte polyclonal activation: a pitfall for vaccine design against infectious agents. Parasitol. Today 16, 62–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Minoprio, P., Itohara, S., Heusser, C., Tonegawa, S. & Coutinho, A. Immunobiology of murine T. cruzi infection: the predominance of parasite-nonspecific responses and the activation of TcRI T cells Immunol. Rev. 112, 183– 207 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Eisen, H., Petry, K. & Voorhis, W.V. The origin of the autoimmune pathology associated with Trypanosoma cruzi infection (Academic, New York, 1990).

    Book  Google Scholar 

  4. Ribeiro-dos-Santos, R. et al. Anti-CD4 abrogates rejection and reestablishes long-term tolerance to syngeneic newborn hearts grafted in mice chronically infected with Trypanosoma cruzi. J. Exp. Med. 175, 29–39 (1992).

    Article  CAS  Google Scholar 

  5. Tarleton, R., Zhang, L. & Downs, M. Autoimmune rejection of neonatal heart transplants in experimental Chagas' disease is a parasite-specific response to infected host tissue. Proc. Natl. Acad. Sci. USA 94, 3932 –3937 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arala-Chaves, M., d'Imperio-Lima, M.R., Coutinho, A., Pena-Rossi, C. & Minoprio, P. V-region-related and -unrelated immunosuppression accompanying infections. Mem. Inst. Oswaldo Cruz 87, 35–41 ( 1992).

    Article  PubMed  Google Scholar 

  7. Minoprio, P., Eisen, H., Joskowicz, M., Pereira, P. & Coutinho, A. Suppression of polyclonal antibody production in Trypanosoma cruzi infected mice by treatment with anti-L3T4 antibodies . J. Immunol. 139, 545– 550 (1987).

    CAS  PubMed  Google Scholar 

  8. Minoprio, P., Coutinho, A., Spinella, S. & Hontebeyrie-Joskowicz, M. Xid immunodeficiency imparts increased parasite clearance and resistance to pathology in experimental Chagas'disease. Int. Immunol. 3, 427–433 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Santos-Lima, E.C. & Minoprio, P. Chagas' disease is attenuated in mice lacking γδ T cells Infec. Immun. 64, 215–221 ( 1996).

    Article  CAS  Google Scholar 

  10. Cordeiro.da.Silva, A., Guevara.Espinoza, A., Taibi, A., Ouaissi, A. & Minoprio, P. A 24 kDa Trypanosoma cruzi antigen is a B cell activator. Immunology 94, 189–196 (1998).

    Article  CAS  Google Scholar 

  11. Contreras, V.T., Salles, J.M., Thomas, N., Morel, C.M. & Goldenberg, S. In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol. Biochem. Parasitol. 16, 315–327 ( 1985).

    Article  CAS  PubMed  Google Scholar 

  12. Dragon, E.A., Sias, S.R., Kato, E.A. & Gabe, J.D. The genome of Trypanosoma cruzi contains a constitutively expressed, tandemly arranged multicopy gene homologous to a major heat shock protein. Mol. Cell. Biol. 7, 1271–1275 ( 1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Moro, A., Ruiz-Cabello, F., Fernandez-Cano, A., Stock, R.P. & Gonzalez, A. Secretion by Trypanosoma cruzi of a peptidyl-prolyl cis-trans isomerase involved in cell infection. EMBO Journal 14(11), 2483– 2490 (1995).

    Article  CAS  Google Scholar 

  14. Cardinale, G.J. & Abeles, R.H. Purification and mechanism of action of proline racemase. Biochemistry 7, 3970–3978 (1968).

    Article  CAS  PubMed  Google Scholar 

  15. Rudnick, G. & Abeles, R. Reaction mechanism and structure of the active site of proline racemase. Biochemistry 14, 4515–4522 (1975).

    Article  CAS  PubMed  Google Scholar 

  16. Lamzin, V.S., Zbigniew, D. & Wilson, K.S. How nature deals with stereoisomers. Curr. Opin. Struct. Biol. 5, 830–836 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Barret, F.M. Changes in the concentration of free amino acids in the haemolymph of Rhodnius prolixus during the fifth instar. Comp. Biochem. Physiol. 48, 241–250 ( 1973).

    Google Scholar 

  18. Sylvester, D. & Krassner, S.M. Proline metabolism in Trypanosoma cruzi epimastigotes. Comp. Biochem. Physiol. 55 (B), 443–447 ( 1976).

    CAS  Google Scholar 

  19. de Isola, E.L., Lammel, E.M., Katzin, V.J. & Gonzalez Cappa, S.M. Influence of organ extracts of Triatoma infestans on differentiation of Trypanosoma cruzi. J. Parasitol. 67, 53–58 (1981).

    Article  CAS  PubMed  Google Scholar 

  20. Rosenberg, R.D. et al. Heparan sulfate proteoglycans of the cardiovascular system: specific structures emerge but how is synthesis regulated? J. Clin. Inv. 100, 67S–75S ( 1997).

    Google Scholar 

  21. Herrera, E.M., Ming, M., Ortega-Barria, E. & Pereira, M.E. Mediation of Trypanosoma cruzi invasion by heparan sulfate receptors on host cells and penetrin counter receptors on the trypanosomes. Mol. Biochem. Parasitol. 75(1), 73– 83 (1994).

    Article  Google Scholar 

  22. Ortega-Barria, E. & Pereira, M.E. A novel T. cruzi heparin binding protein promotes fibroblast adhesion and penetration of engineered bacteria and trypanosomes into mammalian cells. Cell 67, 411–421 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  23. Shakibaei, M. & Frevert, U. Dual interaction of the malaria circumsporozoite protein with the low density lipoprotein receptor related (LRP) and heparan sulfate proteoglycans. J. Exp. Med. 184, 1699–1711 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Thompson, R.J., Bouwer, H.G., Portnoi, D.A. & Frankel, F.R. Pathogenicity and immunogenicity of a Listeria monocytogenes strain that requires D-alanine for growth. Infect. Immun. 66(8), 3552–3561 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mozes, E., Sela, M. & Taussig, M.J. Tolerance to thymus independent antigens. Characteristics of induction of tolerance to thymus independent synthetic polypeptides. Immunology 27, 641–646 ( 1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sela, M. & Zisman, E. Different roles of D-amino acids in immune phenomena. FASEB J. 11, 449– 456 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Coutinho, A. & Moller, G. B cell mitogenic properties of thymus-independent antigens. Nature 245, 12– 14 (1973).

    CAS  Google Scholar 

  28. Coutinho, A., Gronowicz, E., Bullock, W.W. & Moller, G. Mechanism of thymus-independent immunocyte triggering. Mitogenic activation of B cells results in specific immune responses. J. Exp. Med. 139(1), 74–92 ( 1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Janeway, C.A. & Humphrey, J.H. Synthetic antigens composed exclusively of L- or D-amino acids. II. Effect of optical configuration on the metabolism and fate of synthetic polypeptide antigens in mice. Folia Biol. 16, 156–172 ( 1970).

    Google Scholar 

  30. d'Imperio-Lima, M.R., Eisen, H., Minoprio, P., Joskowicz, M. & Coutinho, A. Persistance of polyclonal B cell activation with undetectable parasitemia in late stages of experimental Chagas' disease. J. Immunol. 137, 353–356 ( 1986).

    CAS  PubMed  Google Scholar 

  31. Tavares, D., Ferreira, P., Vilanova, M., Videira, A. & Arala-Chaves, M. Immunoprotection against systemic candidiasis in mice. Int. Immunol. 7(5), 785–796 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Fisher, G. in D-Amino Acids in Sequences of Secreted Peptides of Multicellular Organisms (ed. Jolles, P.) 109–118 (Birkhauser Verlag, Basel, 1998).

    Book  Google Scholar 

  33. Wolosker, H. et al. Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc. Natl. Acad. Sci. USA 96, 721–725 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Waters, G. Langsley, J.C. Barale, S. Jarriault and L. de Mendonça Lima for discussions; P. Boussot and J. B. Boulé for help with automated sequencing and recombinant protein expression, respectively; L. Mulard for access to the polarimeter, A. Berneman for help with immunoblotting techniques; and E. Bischoff for helping with figure layouts. B.R.-S.-M. is a fellow of Consejo Nacional de Ciencia y Tecnologia #94587, México; W.D. is a fellow of the Pasteur/Fundação Oswaldo Cruz co-operative agreement and Institut National pour la Santé et la Techerche Médicale, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Minoprio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reina-San-Martín, B., Degrave, W., Rougeot, C. et al. A B-cell mitogen from a pathogenic trypanosome is a eukaryotic proline racemase. Nat Med 6, 890–897 (2000). https://doi.org/10.1038/78651

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/78651

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing