Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Gene transfer into CD4+ T lymphocytes: Green fluorescent protein-engineered, encephalitogenic T cells illuminate brain autoimmune responses

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retroviral gene vector and expression of GFP in CD4+ T lymphocytes.
Figure 2: TMBPGFP cells in vivo and isolated ex vivo.
Figure 3: TMBPGFP cells in the immune repertoire of Lewis rats.

References

  1. Ben-Nun, A., Wekerle, H. & Cohen, I.R. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur. J. Immunol. 11, 195–199 (1981).

    Article  CAS  Google Scholar 

  2. Wekerle, H., Kojima, K., Lannes-Vieira, J., Lassmann, H. & Linington, C. Animal models. Ann. Neurol. 36, S47–S53 (1994).

    Article  CAS  Google Scholar 

  3. Ben-Nun, A., Wekerle, H. & Cohen, I.R. Vaccination against autoimmune encephalomyelitis using attenuated cells of a T lymphocyte line reactive against myelin basic protein. Nature 292, 60–61 (1981).

    Article  CAS  Google Scholar 

  4. Vandenbark, A.A., Hashim, G. & Offner, H. Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis. Nature 341, 541–544 (1989).

    Article  CAS  Google Scholar 

  5. Kramer, R. et al. Gene transfer through the blood-nerve barrier: Nerve growth factor engineered neuritogenic T lymphocytes attenuate experimental autoimmune neuritis. Nature Med. 1, 1162– 1166 (1995).

    Article  CAS  Google Scholar 

  6. Waisman, A. et al. Suppressive vaccination with DNA encoding a variable region gene of the T-cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Nature Med. 2, 899– 905 (1996).

    Article  CAS  Google Scholar 

  7. Bauer, J., Wekerle, H. & Lassmann, H. Apoptosis in brain-specific autoimmune disease. Curr. Opin. Immunol. 7, 839–843 (1995).

    Article  CAS  Google Scholar 

  8. Cormack, B.P., Valdivia, R.H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    Article  CAS  Google Scholar 

  9. Qin, Y., Sun, D. & Wekerle, H. Immune regulation in self tolerance: Functional elimination of self-reactive, counterregulatory CD8+ T lymphocyte circuit by neonatal transfer of encephalitogenic CD4+ T cell lines. Eur. J. Immunol. 22, 1193– 1198 (1992).

    Article  CAS  Google Scholar 

  10. Rocha, B. et al. Accumulation of bromodeoxyuridine-labeled cells in central and peripheral lymphoid organs: Minimal estimates of production and turnover rates of mature lymphocytes. Eur. J. Immunol. 20, 1697–1708 (1990).

    Article  CAS  Google Scholar 

  11. Barbarese, E., Soares, H., Yang, S. & Clark, R.B. Comparison of CNS homing pattern among murine TH cell lines responsive to myelin basic protein. J. Neuroimmunol. 39, 151– 162 (1992).

    Article  CAS  Google Scholar 

  12. Ludowyk, P.A., Willenborg, D.O. & Parish, C.R. Selective localization of neuro-specific T lymphocytes in the central nervous system. J. Neuroimmunol. 37, 237–250 (1992).

    Article  CAS  Google Scholar 

  13. Zeine, R. & Owens, T. Direct demonstration of the infiltration of murine central nervous system by Pgp-1/CD44highCD45RBlowCD4+ T cells that induce experimental allergic encephalomyelitis. J. Neuroimmunol. 40, 57– 70 (1992).

    Article  CAS  Google Scholar 

  14. Weinberg, A.D. et al. Target organ-specific up-regulation of the MRC OX-40 marker and selective production of Th1 lymphokine mRNA by encephalitogenic T helper cells from the spinal cord of rats with experimental autoimmune encephalomyelitis. J. Immunol. 152, 4712– 4721 (1994).

    CAS  PubMed  Google Scholar 

  15. Körner, H. et al. Unimpaired autoreactive T-cell traffic within the central nervous system during tumor necrosis factor receptor-mediated inhibition of experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 92, 11066–11070 (1995).

    Article  Google Scholar 

  16. Gütgemann, I., Fahrer, A.M., Altman, J.D., Davis, M.M. & Chien, Y.-H. Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity 8, 667–673 (1998).

    Article  Google Scholar 

  17. Crawford, F., Kozono, H., White, J., Marrack, P. & Kappler, J.W. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8, 675–682 (1998).

    Article  CAS  Google Scholar 

  18. Kearney, E.R., Pape, K.A., Loh, D.Y. & Jenkins, M.K. Visualization of peptide specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327– 339 (1994).

    Article  CAS  Google Scholar 

  19. Schönrich, G. et al. Down-regulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell 65, 293–304 (1991).

    Article  Google Scholar 

  20. Chiocchetti, A., Tolosano, E., Hirsch, E., Silengo, L. & Altruda, F. Green fluorescent protein as a reporter of gene expression in transgenic mice. Biochim. Biophys. Acta 1352, 193–202 (1997).

    Article  CAS  Google Scholar 

  21. Ebert, O. et al. Lymphocyte apoptosis: Induction by gene transfer techniques. Gene Ther. 4, 296–302 (1997).

    Article  CAS  Google Scholar 

  22. Kasid, A. et al. Human gene transfer: Characterization of human tumor infiltrating lymphocytes as vehicles for retroviral-mediated gene transfer in man. Proc. Natl. Acad. Sci. USA 87, 473– 477 (1990).

    Article  CAS  Google Scholar 

  23. Woffendin, C. et al. Nonviral and viral delivery of a human immunodeficiency virus protective gene into primary human T cells. Proc. Natl. Acad. Sci. USA 91, 11581–11585 (1994).

    Article  CAS  Google Scholar 

  24. Bunnell, B.A., Muul, L.M., Donahue, R.E., Blaese, R.M. & Morgan, R.A. High-efficiency retroviral-mediated gene transfer into human and nonhuman primate peripheral blood lymphocytes. Proc. Natl. Acad. Sci. USA 92, 7739– 7743 (1995).

    Article  CAS  Google Scholar 

  25. Rudoll, T. et al. High efficiency retroviral vector mediated gene transfer into human peripheral blood CD4+ T lymphocytes. Gene Ther. 3, 695–705 (1996).

    CAS  PubMed  Google Scholar 

  26. Agarwal, M. et al. Scaffold attachment region-mediated enhancement of retroviral vector. J. Virol. 72, 3720– 3728 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Quinn, E.R., Lum, L.G. & Trevor, K.T. T cell activation modulates retrovirus-mediated gene expression. Hum. Gene Ther. 9, 1457– 1467 (1998).

    Article  CAS  Google Scholar 

  28. Qin, L. et al. Promoter attenuation in gene therapy: Interferon-γ and tumor necrosis factor-α inhibit transgene expression. Hum. Gene Ther. 8, 2019–2029 (1997).

    Article  CAS  Google Scholar 

  29. Pette, M. et al. Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 40, 1770–1776 (1990).

    Article  CAS  Google Scholar 

  30. Miller, A.D. & Rosman, G. Improved retroviral vectors for gene transfer and expression. BioTechniques 7, 980–990 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Markowitz, D., Goff, S. & Bank, A. A safe packaging line for gene transfer: Separating viral genes on two different plasmids. J. Virol. 62, 1120– 1124 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I. Haarmann, P. Grämmel and D. Büringer for their technical assistance, and M. Bradl and C. Linington for critically reading the manuscript. This work was partly supported by Schering AG, Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Wekerle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flügel, A., Willem, M., Berkowicz, T. et al. Gene transfer into CD4+ T lymphocytes: Green fluorescent protein-engineered, encephalitogenic T cells illuminate brain autoimmune responses. Nat Med 5, 843–847 (1999). https://doi.org/10.1038/10567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/10567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing