Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mammalian heparanase: Gene cloning, expression and function in tumor progression and metastasis

Abstract

Heparan sulfate proteoglycans interact with many extracellular matrix constituents, growth factors and enzymes. Degradation of heparan sulfate by endoglycosidic heparanase cleavage affects a variety of biological processes. We have purified a 50-kDa heparanase from human hepatoma and placenta, and now report cloning of the cDNA and gene encoding this enzyme. Expression of the cloned cDNA in insect and mammalian cells yielded 65-kDa and 50-kDa recombinant heparanase proteins. The 50-kDa enzyme represents an N-terminally processed enzyme, at least 100-fold more active than the 65-kDa form. The heparanase mRNA and protein are preferentially expressed in metastatic cell lines and specimens of human breast, colon and liver carcinomas. Low metastatic murine T-lymphoma and melanoma cells transfected with the heparanase cDNA acquired a highly metastatic phenotype in vivo, reflected by a massive liver and lung colonization. This represents the first cloned mammalian heparanase, to our knowledge, and provides direct evidence for its role in tumor metastasis. Cloning of the heparanase gene enables the development of specific molecular probes for early detection and treatment of cancer metastasis and autoimmune disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleotide sequence and predicted amino acid sequence of human heparanase.
Figure 2: Expression of the hpa gene in a baculovirus expression system.
Figure 3: Preferential expression of heparanase in human breast and hepatocellular carcinomas.
Figure 4: Preferential immunohistochemical staining of heparanase in a colonic polyp, primary and metastatic human colon adenocarcinoma.
Figure 5: Overexpression of heparanase in non-metastatic Eb T-lymphoma cells leads to liver metastasis and accelerated mortality.
Figure 6: Processing of a 65-kDa proenzyme into a highly active 50-kDa heparanase enzyme.

Similar content being viewed by others

References

  1. Kjellen, L. & Lindahl, U. Proteoglycans: structures and interactions. Annu. Rev. Biochem. 60, 443– 475 (1991).

    Article  CAS  Google Scholar 

  2. David, G. Integral membrane heparan sulfate proteoglycan. FASEB J. 7, 1023–1030 (1993).

    Article  CAS  Google Scholar 

  3. Jackson, R.L., Busch, S.J. & Cardin, A.L. Glycosaminoglycans: Molecular properties, protein interactions and role in physiological processes. Physiol. Rev. 71, 481–539 (1991).

    Article  CAS  Google Scholar 

  4. Wight, T.N., Kinsella, M.G. & Qwarnstromn, E.E. The role of proteoglycans in cell adhesion, migration and proliferation. Curr. Opin. Cell Biol. 4, 793–801 (1992).

    Article  CAS  Google Scholar 

  5. Rapraeger, A.C. The coordinated regulation of heparan sulfate, syndecans and cell behavior. Curr. Opin. Cell Biol. 5, 844– 853 (1993).

    Article  CAS  Google Scholar 

  6. Wight, T.N. Cell biology of arterial proteoglycans. Arteriosclerosis 9, 1–20 (1989).

    Article  CAS  Google Scholar 

  7. Vlodavsky, I., Fuks, Z., Bar-Ner, M., Ariav, Y. & Schirrmacher, V. Lymphoma cell mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: Relationship to tumor cell metastasis. Cancer Res. 43, 2704–2711 (1983).

    CAS  Google Scholar 

  8. Nakajima, M., Irimura, T., DiFerrante, D., DiFerrante, N. & Nicholson, G.L. Heparan sulfate degradation: relation to tumor invasion and metastatic properties of mouse B16 melanoma sublines. Science 220, 611– 613 (1983).

    Article  CAS  Google Scholar 

  9. Nakajima, M., Irimura, T. & Nicolson, G.L. Heparanase and tumor metastasis. J. Cell. Biochem. 36, 157–167 (1988).

    Article  CAS  Google Scholar 

  10. Vlodavsky, I. et al. Inhibition of tumor metastasis by heparanase inhibiting species of heparin. Invasion Metastasis 14, 290– 302 (1995).

    CAS  Google Scholar 

  11. Parish, C.R., Coombe, D.R., Jakobsen, K.B. & Underwood, P.A. Evidence that sulphated polysaccharides inhibit tumor metastasis by blocking tumor cell-derived heparanase. Int. J. Cancer 40, 511–517 (1987).

    Article  CAS  Google Scholar 

  12. Lider, O. et al. Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with heparinoid inhibitors of T lymphocyte heparanase. J. Clin. Invest. 83, 752–756 (1989).

    Article  CAS  Google Scholar 

  13. Willenborg, D. O. & Parish, C. R. Inhibition of allergic encephalomyelitis in rats by treatment with sulfated polysaccharides. J. Immunol. 140, 3401– 3405 (1988).

    CAS  Google Scholar 

  14. Vlodavsky, I. et al. Expression of heparanase by platelets and circulating cells of the immune system: Possible involvement in diapedesis and extravasation. Invasion Metastasis 12, 112– 127 (1992).

    Google Scholar 

  15. Graham, L.D. & Underwood, P.A. Comparison of the heparanase enzymes from mouse melanoma cells, mouse macrophages and human platelets. Biochem. Mol. Biol. 39, 563– 571 (1996).

    CAS  Google Scholar 

  16. Ishai-Michaeli, R., Eldor, A. & Vlodavsky, I. Heparanase activity expressed by platelets, neutrophils and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cell Reg. 1, 833– 842 (1990).

    Article  CAS  Google Scholar 

  17. Vlodavsky, I., Bar-Shavit, R., Ishai-Michaeli, R., Bashkin, P. & Fuks, Z. Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem. Sci. 16, 268–271 (1991).

    Article  CAS  Google Scholar 

  18. Eisenberg, S., Sehayek, E., Olivecrona, T. & Vlodavsky, I. Lipoprotein lipase enhances binding of lipoproteins to heparan sulfate on cell surfaces and extracellular matrix. J. Clin. Invest. 90, 2013–2021 (1992).

    Article  CAS  Google Scholar 

  19. Oosta, G.M., Favreau, L.V., Beeler, D.L. & Rosenberg, R.D. Purification and properties of human platelet heparitinase. J. Biol. Chem. 257, 11249–11255 (1982).

    CAS  Google Scholar 

  20. Freeman, C. & Parish, C.R. Human platelet heparanase: Purification, characterization and catalytic activity. Biochem. J. 330, 1341–1350 (1998).

    Article  CAS  Google Scholar 

  21. Hoogewerf, A.J. et al. CXC chemokines connective tissue activating peptide-III and neutrophil activating peptide-2 are heparin/heparan sulfate-degrading enzymes. J. Biol. Chem. 270, 3268– 3277 (1995).

    Article  CAS  Google Scholar 

  22. Gonzalo, V. et al. Partial sequence of human platelet heparitinase and evidence of its ability to polymerize. Biochim. Biophys. Acta 1429, 431–438 (1999).

    Article  Google Scholar 

  23. Jin, L., Nakajima, M. & Nicolson, G.L. Immunochemical localization of heparanase in mouse and human melanoma. Int. J. Cancer 45, 1088–1095 (1990).

    Article  CAS  Google Scholar 

  24. De Vouge, M.W. et al. Immunoselection of GRP94/Endoplasmin from a KNRK cell specific g gt11 library using antibodies directed against a putative heparanase amino-terminal peptide. Int. J. Cancer 56, 286– 294 (1994).

    Article  CAS  Google Scholar 

  25. Goshen, R. et al. Purification and characterization of placental heparanase and its expression by cultured cytotrophoblasts. Mol. Hum. Reprod. 2, 679–684 (1996).

    Article  CAS  Google Scholar 

  26. Bar-Ner, M., Eldor, A., Wasserman, L., Matzner, Y. & Vlodavsky, I. Inhibition of heparanase mediated degradation of extracellular matrix heparan sulfate by modified and non-anticoagulant heparin species. Blood 70, 551–557 (1987).

    CAS  Google Scholar 

  27. Even-Ram, S. et al. Thrombin receptor overexpression in malignant and physiological invasion processes. Nature Med. 8, 909– 914 (1998).

    Article  Google Scholar 

  28. Larizza, L., Schirrmacher, V. & Pfluger, E. Acquisition of high metastatic capacity after in vitro fusion of a non-metastatic tumor line with a bone marrow derived macrophage. J. Exp. Med. 160, 1579– 1584 (1984).

    Article  CAS  Google Scholar 

  29. Klein, U. & Figura, K.V. Substrate specificity of a heparan-sulfate degrading endoglucuronidase from human placenta. Hoppe-Seyler's Z Physiol. Chem. 360, 1465–1471 (1979).

    Article  CAS  Google Scholar 

  30. Bame, K. J., & Robson K. Heparanases produce distinct populations of heparan sulfate glycosaminoglycans in Chinese hamster ovary cells. J. Biol. Chem. 272, 2245–2251 (1997).

    Article  CAS  Google Scholar 

  31. Sandback-Pikas, D., Li, J-P., Vlodavsky, I. & Lindahl, U. Substrate specificity of heparanases from human hepatoma and platelets. J. Biol. Chem. 273, 18770–18777 (1998).

    Article  Google Scholar 

  32. Pillarisetti, S. et al. Endothelial cell heparanase modulation of lipoprotein lipase activity. J. Biol. Chem. 272, 15753– 15759 (1997).

    Article  CAS  Google Scholar 

  33. Yahalom, J., Eldor, A., Fuks, Z. & Vlodavsky, I. Degradation of sulfated proteoglycans in the subendothelial extracellular matrix by human platelet heparitinase. J. Clin. Invest. 74, 1842–1849 (1984).

    Article  CAS  Google Scholar 

  34. Bashkin, P., Razin, E., Eldor, A. & Vlodavsky, I. Degranulating mast cells secrete an endoglycosidase which degrades heparan sulfate in subendothelial extracellular matrix. Blood 75, 2204– 2212 (1990).

    CAS  Google Scholar 

  35. Matzner, Y. et al. Degradation of heparan sulfate in the subendothelial basement membrane by a readily released heparanase from human neutrophils. J. Clin. Invest. 76, 1306–1313 (1985).

    Article  CAS  Google Scholar 

  36. Naparstek, Y., Cohen, I.R., Fuks, Z. & Vlodavsky, I. Activated T lymphocytes produce a matrix-degrading heparan sulfate endoglycosidase. Nature 310, 241–243 (1984).

    Article  CAS  Google Scholar 

  37. Peretz, T. et al. Maintenance on extracellular matrix and expression of heparanase activity by human ovarian carcinoma cells from biopsy specimens. Int. J. Cancer 45, 1054–1060 (1990).

    Article  CAS  Google Scholar 

  38. Kleiner, D. E. & Stetler-Stevenson, W. G. Structural biochemstry and activation of matrix metalloproteases. Curr. Opin. Cell Biol. 5, 891–897 (1993).

    Article  CAS  Google Scholar 

  39. Stetler-Stevenson, W. G. Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev. 9, 289–303 (1990).

    Article  CAS  Google Scholar 

  40. Mignatti, P. & Rifkin, D. B. Biology and biochemistry of proteinases in tumor invasion. Physiol. Rev. 73, 161–195 (1993).

    Article  CAS  Google Scholar 

  41. Bar-Ner, M. et al. Sequential degradation of heparan sulfate in the subendothelial extracellular matrix by highly metastatic lymphoma cells. Int. J. Cancer 35, 483–491 (1985).

    Article  CAS  Google Scholar 

  42. Vlodavsky, I. et al. in Tumor Angiogenesis (eds. Lewis, C.E., Bicknell, R &Ferrara, N.) 125–140 (Oxford University Press, Oxford, UK, 1997).

    Google Scholar 

  43. Vlodavsky, I., Bar-Shavit, R., Korner, G. & Fuks, Z. in Basement Membranes: Cellular and Molecular Aspects (eds. Rohrbach, D.H. & Timpl, R.) 327–343 (Academic, Orlando, Florida, 1993).

    Book  Google Scholar 

  44. Yayon, A., Klagsbrun, M., Esko, J.D., Leder, P. & Ornitz, D.M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64, 841– 848 (1991).

    Article  CAS  Google Scholar 

  45. Miao, H-Q., Ornitz, D. M., Eingorn, E., Ben-Sasson, S. A. & Vlodavsky I. Modulation of fibroblast growth factor-2 receptor binding, dimerization, signaling, and angiogenic activity by a synthetic heparin-mimicking polyanionic compound. J. Clin. Invest. 99, 1565–1575 (1997).

    Article  CAS  Google Scholar 

  46. Vlodavsky, I. et al. Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix. Proc. Natl. Acad. Sci. USA 84, 2292–2296 (1987).

    Article  CAS  Google Scholar 

  47. Vlodavsky, I. & Christofori, G. in Antiangiogenic Agents in Cancer Therapy (ed. Teicher, B.A.) 93–118 (Humana, Totowa, New Jersey, 1998).

    Book  Google Scholar 

  48. Soule, H.D. et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50, 6075–6086 (1990).

    CAS  Google Scholar 

  49. Vlodavsky, I. in Current protocols in Cell Biology, Vol. I, Suppl. I (eds. Bonifacino, J.S., Dasso, M, Harford, J.B, Lippincott-Schwartz, J & Yamada, K.M.) 10.4.1–10.4.14 (John Wiley & Sons, New York, New York, 1999).

    Google Scholar 

  50. Savitsky, K. et al. Ataxia-telangiectasia: structural diversity of untranslated sequences suggests complex post-translational regulation of ATM gene expression. Nucleic Acids Res. 25, 1678– 1684 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Melamed, E. Feinstein, O. Yacoby-Zeevi, M. Ayal-Hershkovitz, E. Levi and Z. Rangini-Gueta for encouragement, discussions and assistance. This work was supported by grants from the Israel Science Foundation administered by the Israel Academy of Sciences and Humanities; The Israel Cancer Research Fund (ICRF), the GSF (German Forschungszentrum fur umwelt und gesundheit) (BMBF-MOS); and InSight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Vlodavsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlodavsky, I., Friedmann, Y., Elkin, M. et al. Mammalian heparanase: Gene cloning, expression and function in tumor progression and metastasis. Nat Med 5, 793–802 (1999). https://doi.org/10.1038/10518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing