Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Limited CD4+ T-cell renewal in early HIV-1 infection: Effect of highly active antiretroviral therapy

We show that the fraction of proliferating CD4+ lymphocytes is similar in HIV-infected subjects in the early stage of disease and in HIV-negative subjects, whereas the fraction of proliferating CD8+ lymphocytes is increased 6.8-fold in HIV-infected subjects. After initiation of antiviral therapy, there is a late increase in proliferating CD4+ T cells associated with the restoration of CD4+ T-cell counts. These results provide strong support for the idea of limited CD4+ T-cell renewal in the early stage of HIV infection and indicate that after effective suppression of virus replication, the mechanisms of CD4+ T-cell production are still functional in early HIV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Wei, X. et al. Viral dynamics in human immunodeficency virus type 1 infection. Nature, 373, 117–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Ho, D.D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Mohri, H., Bonhoeffer, S., Monard, S., Perelson, A.S. & Ho, D.D. Rapid turnover of T lymphocytes in SIV-infected Rhesus Macaques. Science, 279, 1223–1227 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Wolthers, K.C. et al. T cell telomere length in HIV-1 infection: No evidence for increased CD4+ T cell turnover. Science, 274, 1543–1547 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Pakker, N.C. et al. Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: a composite of redistribution and proliferation. Nature Med. 4, 208–214 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Gerdes, J. et al. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 133, 1710–1715 (1984).

    CAS  PubMed  Google Scholar 

  7. Bruno, S. & Darzynkiewic, Z. Cell cycle dependent expression and stability of the nuclear protein detected by Ki-67 antibody in HL-60 cells. Cell Prolif. 25, 31–41 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Schwarting, R., Cerdes, J., Niehus, J., Jaeschke, L. & Stein, H. Determination of the growth fraction in cell suspensions by flow cytometry using the monoclonal antibody Ki-67. J. Immunol. Meth. 90, 65–70 (1986).

    Article  CAS  Google Scholar 

  9. Westermann, J. & Pabst, R. Lymphocyte subsets in the blood: a diagnostic window on the lymphoid system. Immunol. Today, 11, 406–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Cantrell, D.A. & Smith, K.A. The interleukine-2 T-cell system: a new cell growth model. Science 224, 1312–1316 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Gulick, R.M. et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretrovirai therapy. N. Engl. J. Med. 337, 734–739 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Hammer, S.M. et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. N. Engl. J. Med. 11, 725–733 (1997).

    Article  Google Scholar 

  13. Perelson, A.S. et al. Decay characteristics of HIV-1 infected compartments during combination therapy. Nature 387, 188–191 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Perelson, A.S., Neumann, A.U., Markowitz, M. Leonary, J.M. & Ho, D.D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586(1996).

    Article  CAS  PubMed  Google Scholar 

  15. Sachsenberg, N. et al. Turnover of CD4+ and CD8+ T lymphocytes as measured by Ki-67 antigen. y. Exp. Med. 187, 1295–;1303 (1998).

    Article  CAS  Google Scholar 

  16. Zhang, Z.Q. et al. Kinetics of CD4+ T cell repopu|ation of lymphoid tissues after treatment of HIV-1 infection. Proc. Natl. Acad. Sci. USA, 95, 1154–1159 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paganin, C., Mones, D.S., Marshall, J.D., Frank, I. & Trinchieri, G. Frequency and cytokine profile of HPRT mutant T cells in HIV-infected and healthy donors: implication for T cell proliferation in HIV disease. J. Clin. Invest. 99, 663–668 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hellerstein, M.K. & McCurie, J.M. T cell turnover in HIV-1 disease. Immunity 7, 583–589 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Clark, D.R. et al. Peripheral blood from human immunodeficiency virus type 1-infected patients display diminished T cell generation capacity. J. Infect. Dis. 176, 649–654(1997).

    Article  CAS  PubMed  Google Scholar 

  20. Pantaleo, G., Koenig, S., Baseler, M., Lane, H.C. & Fauci, A.S. Defective clonogenic potential of CD8+ T lymphocytes in patients with AIDS. J. Immunol. 144, 1696–1704 (1990).

    CAS  PubMed  Google Scholar 

  21. Margolick, J.B., Volkman, D.J., Lane, H.C. & Fauci, A.S. Clonal analysis of T lymphocytes in the acquired immunodeficiency syndrome: evidence for an abnormality affecting individual helper and suppressor T cells. J. Clin. Invest. 76, 709–711 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schellekens, P.T. et al. Biphasic rate of CD4+ cell count decline during progression to AIDS correlates with HIV-1 phenotype. AIDS 6, 665 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Schuitemaker, H. et al. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J. Virol. 66, 1354–1361 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pantaleo, G. et al. Lymphoid organs function as major reservoirs for human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 88, 9838–9842 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dewar, R. et al. Application of branched DNA signal amplification to monitor human immunodeficiency virus type 1 burden in plasma. J. Infect. Dis. 170, 1172–1179 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Press, W.H., Plannery, B.P., Teukolsky, S.A. & Vetterking, W.T. in Cambridge U.P., (Cambridge, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleury, S., De Boer, R., Rizzardi, G. et al. Limited CD4+ T-cell renewal in early HIV-1 infection: Effect of highly active antiretroviral therapy. Nat Med 4, 794–801 (1998). https://doi.org/10.1038/nm0798-794

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0798-794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing