Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diabetes induced by Coxsackie virus: Initiation by bystander damage and not molecular mimicry

Abstract

Viral induction of autoimmunity is thought to occur by either bystander T-cell activation or molecular mimicry. Coxsackie B4 virus is strongly associated with the development of insulin-dependent diabetes mellitus in humans and shares sequence similarity with the islet autoantigen glutamic acid decarboxylase. We infected different strains of mice with Coxsackie B4 virus to discriminate between the two possible induction mechanisms, and found that mice with susceptible MHC alleles had no viral acceleration of diabetes, but mice with a T cell receptor transgene specific for a different islet autoantigen rapidly developed diabetes. These results show that diabetes induced by Coxsackie virus infection is a direct result of local infection leading to inflammation, tissue damage, and the release of sequestered islet antigen resulting in the re-stimulation of resting autoreactive T cells, further indicating that the islet antigen sensitization is an indirect consequence of the viral infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tough, D., Borrow, P. & Sprent, J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272, 1947–1950 (1996).

    Article  CAS  Google Scholar 

  2. Tripp, R.A., Hou, S., McMickle, A., Houston, J. & Doherty, P.C. Recruitment and proliferation of CD8+ T cells in respiratory virus infections. J. Immunol. 154, 6013–6021 (1995).

    CAS  PubMed  Google Scholar 

  3. Selin, L., Nahill, S. & Welsh, R. Cross-reactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses. J. Exp. Med. 179, 1933–1943 (1994).

    Article  CAS  Google Scholar 

  4. Nahill, S. & Welsh, R. High frequency of cross-reactive cytotoxic T lymphocytes elicited during the virus-induced polyclonal cytotoxic T lymphocyte response. J. Exp. Med. 177, 317–327 (1993).

    Article  CAS  Google Scholar 

  5. Evans, C.F., Horwitz, M.S., Hobbs, M.V. & Oldstone, M.B.A. Viral infection of transgenic mice expressing a viral protein in oligodendrocytes leads to chronic central nervous system autoimmune disease. J. Exp. Med. 184, 2371–2384 (1996).

    Article  CAS  Google Scholar 

  6. Miller, S.D. et al. Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading 3, 1–4 (1997).

  7. Yoon, J. The role of viruses and environmental factors in the induction of diabetes. Curr. Top. Microbiol. Immunol. 164, 95–123 (1990).

    CAS  PubMed  Google Scholar 

  8. Andreoletti L. et al. Detection of coxsackie B virus RNA sequences in whole blood samples from adult patients at the onset of type I Diabetes Mellitus J. Med. Virol. 52, 121–127 (1997).

    Article  CAS  Google Scholar 

  9. Hyoty, H. et al. A prospective study of the role of coxsackie B and other enterovirus infections in the pathogenesis of IDDM. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes 44, 652–657 (1995).

    Article  CAS  Google Scholar 

  10. Yoon, J., Onodera, T. & Notkins, A. Virus-induced diabetes mellitus. XV. Beta cell damage and insulin-dependent hyperglycemia in mice infected with coxsackie virus B4. J. Exp. Med. 148, 1068–1080 (1978).

    Article  CAS  Google Scholar 

  11. Webb, S., Loria, R., Madge, C. & Kibrick, S. Susceptibility of mice to group B coxsackie virus is influenced by the diabetic gene. J. Exp. Med. 143 1239–1248 (1976).

    Article  CAS  Google Scholar 

  12. Hartig, P., Madge, G. & Webb, S. Diversity within a human isolate of coxsackie B4: relationship to viral-induced diabetes. J. Med. Virol. 11, 23–30 (1983).

    Article  CAS  Google Scholar 

  13. See, D., tilles J. Pathogenesis of virus-induced diabetes in mice. J. Infect. Dis. 171 1131–1138 (1995).

    Article  CAS  Google Scholar 

  14. Atkinson, M. et al. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J. Clin. Invest. 94, 2125–2129 (1994).

    Article  CAS  Google Scholar 

  15. Kaufman, D. et al Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J. Clin. Invest. 89, 283–292 (1992).

    Article  CAS  Google Scholar 

  16. Tian J. Lehmann, P. & Kaufman, D. T cell cross-reactivity between coxsackievirus and glutamate decarboxylase is associated with a murine diabetes susceptibility allele. J. Exp. Med. 180 1979–1984 (1994).

    Article  CAS  Google Scholar 

  17. Ghosh, S. et al. Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nature Genet. 4, 404–409 (1993).

    Article  CAS  Google Scholar 

  18. Katz, J.D., Wang, B., Haskins, K., Benoist, C. & Mathis, D. Following a diabetogenic T cell from genesis through pathogenesis. Cell 74, 1089–1100 (1993).

    Article  CAS  Google Scholar 

  19. Mueller, R., Bradley, L.M., Krahl, T. & Sarvetnick, N. Mechanism underlying counterregulation of autoimmune diabetes. Immunity 7, 1–20 (1997).

    Article  Google Scholar 

  20. Kaufman, D. et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366, 69–72 (1993).

    Article  CAS  Google Scholar 

  21. Katz, J.D., Benoist, C. & Mathis, D. T helper cell subsets in insulin-dependent diabetes. Science 268, 1185–1188 (1995).

    Article  CAS  Google Scholar 

  22. Tough, D.F. & Sprent, J. Viruses and T cell turnover: evidence for bystander proliferation. Imm. Rev. 150, 129–142 (1996).

    Article  CAS  Google Scholar 

  23. Brabb, T. et al. Triggers of autoimmune disease in a murine TCR-transgenic model for multiple sclerosis. J. Immunol. 159, 497–507 (1997).

    CAS  PubMed  Google Scholar 

  24. Pantaleo, G. et al. Major expansion of CD8+ T cells with a predominant V beta usage during the primary immune response to HIV. Nature 370, 463–467 (1994).

    Article  CAS  Google Scholar 

  25. Kalams, S. et al. Longitudinal analysis of T cell reporter(TCR) gene usage by human immunodeficiency virus 1 envelope-specific cytotoxic T lymphocyte clones reveals a limited TCR repertoire. J. Exp. Med. 179, 1261–1271 (1994).

    Article  CAS  Google Scholar 

  26. Prevost-Blondel, A. et al. In vivo longitudinal analysis of a dominant TCR repertoire selected in human response to influenza virus. Virology 233, 93–104 (1997).

    Article  CAS  Google Scholar 

  27. Utz, U. et al. Skewed T-cell receptor repertoire in genetically identical twins correlates with multiple sclerosis. Nature 364, 243–247 (1993).

    Article  CAS  Google Scholar 

  28. Wahlstrom, J. et al. Lung and blood T-cell receptor repertoire in extrinsic allergic alveolitis. Eur. Respir. J. 10, 772–779 (1997).

    CAS  PubMed  Google Scholar 

  29. Conrad, B. et al. Evidence for superantigen involvement in insulin-dependent diabetes mellitus aetiology. Nature 371 351–355 (1994).

    Article  CAS  Google Scholar 

  30. Butz, E.A. & Bevan, M.J. Massive expansion of antigen-specific CD8 T cells during acute virus infection. Immunity 8, 167–175 (1998)

    Article  CAS  Google Scholar 

  31. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: A reevaluation of bystander activation during viral infection. Immunity 8 177–187 (1998).

    Article  CAS  Google Scholar 

  32. Ehl, S., Hombach, J. Aichele, P., Hengartner, H. & Zinkernagel, R. Bystander activation of cytotoxic T cells: studies on the mechanism and evaluation of in vivo significance in a transgenic mouse model. J. Exp. Med. 185, 1241–1251 (1997).

    Article  CAS  Google Scholar 

  33. Zarozinski, C.C. & Welsh, R.M. Minimal bystander activation of CD8 T cells during the virus-induced polyclonal T cell response. J. Exp. Med. 185 1629–1639 (1997).

    Article  CAS  Google Scholar 

  34. Balasa, B. et al. CD40 ligand -CD40 interactions are necessary for the initiation of insulitis and diabetes in nonobese diabetic mice. Immunol. 159, 4620–4627 (1997).

    CAS  Google Scholar 

  35. Tisch, R. et al. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature. 366, 72–75 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horwitz, M., Bradley, L., Harbertson, J. et al. Diabetes induced by Coxsackie virus: Initiation by bystander damage and not molecular mimicry. Nat Med 4, 781–785 (1998). https://doi.org/10.1038/nm0798-781

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0798-781

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing