Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction

Abstract

Fas ligand is believed to mediate immune privilege in a variety of tissues, including the eye, testis, and a subset of tumors. We tested whether expression of Fas ligand on pancreatic islets either following adenovirai or germline gene transfer could confer immune privilege after transplantation. Islets were infected with an adenovirai vector containing the murine Fas ligand cDNA (AdFasL), and were transplanted into allogenic diabetic hosts. Paradoxically, AdFasL-infected islets underwent accelerated neutrophilic rejection. The rejection was T cell and B cell independent and required Fas protein expression by host cells, but not on islets. Similarly, transgenic mice expressing Fas ligand in pancreatic β cells developed massive neutrophilic infiltrates and diabetes at a young age. Thus, Fas ligand expression on pancreatic islets results in neutrophilic infiltration and islet destruction. These results have important implications for the development of Fas ligand-based immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nagata, S. Fas and Fas ligand: A death factor and its receptor. Adv. Immunol. 57 129–144 (1994).

    Article  CAS  Google Scholar 

  2. Krammer, P.H. et al. The role of APO-1-mediated apoptosis in the immune system. Immun. Rev. 142, 175–191 (1994).

    Article  CAS  Google Scholar 

  3. Nagata, S. & Golstein, P. The Fas death factor. Science 267, 1449–1456 (1995).

    Article  CAS  Google Scholar 

  4. Nagata, S. Fas ligand and immune evasion. Nature Med. 2, 1306–1 307 (1996).

    Article  CAS  Google Scholar 

  5. Fisher, G.H. et al. Dominant interfering fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell l81, 935–946 (1995).

    Article  Google Scholar 

  6. Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1 349 (1995).

    Article  CAS  Google Scholar 

  7. Nagata, S. & Suda, T. Fas and Fas ligand: Ipr and gld mutations. Immun. Today 16, 39–43 (1995).

    Article  CAS  Google Scholar 

  8. Bellgrau, D. et al. A role for CD95 ligand in preventing graft rejection. Nature 377 630–632 (1995).

    Article  CAS  Google Scholar 

  9. Griffith, T.S., Brunner, T., Fletcher, S.M., Green, D.R. & Ferguson, T.A. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Strand, S. et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells — A mechanism of immune evasion?. Nature Med. 2, 1361–1366 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Hahne, M. et al. Melanoma cell expression of Fas (Apo-1/Cd95) ligand — implications for tumor immune escape. Science 274, 1363–1366 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Lau, H.T., Yu, M., Fontana, A. & Stoeckert, C.J., Jr. Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273, 109–112 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Hesse, U.J., Sutherland, D.E., Gores, P.F., Sitges-Serra, A. & Najarian, J.S. Comparison of splenic and renal subcapsular islet autografting in dogs. Transplantation 41, 271–274 (1986).

    Article  CAS  Google Scholar 

  14. Sutherland, D.E. Pancreas and islet transplantation. I. Experimental studies. Diabetologia 20, 161–185 (1981).

    Article  CAS  Google Scholar 

  15. Becker, T.C., BeltrandelRio, H., Noel, R., Johnson, J.H. & Newgard, C.B. Overexpression of hexokinase I in isolated islets of Langerhans via recombinant ade-novirus. J. Biol. Chem. 269, 21234–21238 (1994).

    CAS  Google Scholar 

  16. Csete, M.E. et al. Efficient gene transfer to pancreatic islets mediated by adenoviral vectors. Transplantation 59, 263–268 (1995).

    Article  CAS  Google Scholar 

  17. Takahashi, T. et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the fas ligand. Cell 76, 969–976 (1994).

    Article  CAS  Google Scholar 

  18. Hansen, W.A. et al. Supravital dithizone staining in the isolation of human and rat pancreatic islets. Diabetes Res. 10, 53–57 (1989).

    CAS  Google Scholar 

  19. Shiroki, R. et al. Human peripheral blood lymphocyte reconstituted severe combined immunodeficient (hu-PBL-SCID) mice: A model for human islet allograft rejection. Transplantation 57, 1555–1562 (1994).

    Article  CAS  Google Scholar 

  20. Yamada, K. et al. Mouse islet cell lysis mediated by interleukin-1-induced Fas. Diabetologia 39, 1306–1312 (1996).

    Article  CAS  Google Scholar 

  21. Chervonsky, A. et al. The role of Fas in autoimmune diabetes. Cell 89, 17–24 (1997).

    Article  CAS  Google Scholar 

  22. Adachi, M., Watanabe-Fukunaga, R. & Nagata, S. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen geneof Ipr mice. Proc. Natl. Acad. Sci. USA 90, 1756–1 760 (1993).

    Article  CAS  Google Scholar 

  23. Adachi, M. et al. Targeted mutation in the fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nature Genet. 11, 294–300 (1995).

    Article  CAS  Google Scholar 

  24. Moloney, W.C., McPherson, K. & Fliegelman, L. Esterase activity in leukocytes demonstrated by the use of naphthol AS-D-chloroacetate substrate. J. Histochem. Cytochem. 8, 200–207 (1960).

    Article  CAS  Google Scholar 

  25. Jolicoeur, C., Hanahan, D. & Smith, K.M. T-cell tolerance toward a transgenic beta-cell antigen and transcription of endogenous pancreatic genes in thymus. Proc.Natl. Acad. Sci. USA 91, 6707–6711 (1994).

    Article  CAS  Google Scholar 

  26. Efrat, S. Sexual dimorphism of pancreatic beta-cell degeneration in transgenic mice expressing an insulin-ras hybrid gene. Endocrinology 128, 897–901 (1991).

    Article  CAS  Google Scholar 

  27. Lo, D. et al. Diabetes and tolerance in transgenic mice expressing class II MHC molecules in pancreatic beta cells. Cell 53, 159–168 (1988).

    Article  CAS  Google Scholar 

  28. Sarvetnick, N., Liggitt, D., Pitts, S.L., Hansen, S.E. & Stewart, T.A. Insulin-dependent diabetes mellitus induced in transgenic mice by ectopic expression of class II MHC and interferon-gamma. Cell 52, 773–782 (1988).

    Article  CAS  Google Scholar 

  29. Seino, K.-I., Kayagaki, N., Okumura, K. & Yagita, H. Antitumor effect of locally produced CD95 ligand. Nature Med. 3, 165–170 (1997).

    Article  CAS  Google Scholar 

  30. Abreu-Martin, M.T., Vidrich, A., Lynch, D.H. & Targan, S.R. Divergent induction of apoptosis and IL-8 secretion in HT-29 cells in response to TNF-alpha and ligation of Fas antigen. J. Immunol. 155, 4147–4154 (1995).

    CAS  Google Scholar 

  31. Sekine, C. et al. Fas-mediated stimulation induces II-8 secretion by rheumatoidarthritis synoviocytes independently of Cpp32-mediated apoptosis. Biochem. Biophys. Res. Commun. 228, 14–20 (1996).

    Article  CAS  Google Scholar 

  32. Baggiolini, M. & Clark-Lewis, I. Interleukin-8, a chemotactic and inflammatory cyokine. FEBS Lett. 307, 97–101 (1992).

    Article  CAS  Google Scholar 

  33. Cacalano, G. et al. Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 265, 682–684 (1994).

    Article  CAS  Google Scholar 

  34. Tanaka, M., Suda, T., Takahashi, T. & Nagata, S. Expression of the functional soluble form of human fas ligand in activated lymphocytes. EMBO J. 14, 1129–1135 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Mariani, S.M., Matiba, B., Baumler, C. & Krammer, P.H. Regulation of cell surface APO-1/Fas (CD95) ligand expression by metalloproteases. Eur. J. Immunol. 25, 2303–2307 (1995).

    Article  CAS  Google Scholar 

  36. Kayagaki, N. et al. Metalloproteinase-mediated release of human Fas ligand. J. Exp. Med. 182, 1777–1783 (1995).

    Article  CAS  Google Scholar 

  37. Iwai, K. et al. Differential expression of bcl-2 and susceptibility to anti-Fas-mediatedcell death in peripheral blood lymphocytes, monocytes, and neutrophils. Blood 84, 1201–1208 (1994).

    CAS  Google Scholar 

  38. Liles, W.C., Kiener, P.A., Ledbetter, J.A., Aruffo, A. & Klebanoff, S.J. Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: Implications for the regulation of apoptosis in neutrophils. J. Exp. Med. 184, 429–440 (1996).

    Article  CAS  Google Scholar 

  39. Liles, W.C. & Klebanoff, S.J. Regulation of apoptosis in neutrophils — Fas track to death?. J. Immunol. 155, 3289–3291 (1995).

    CAS  Google Scholar 

  40. Allison, J., Georgiou, H.M., Strasser, A. & Vaux, D. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration, but does not confer immune privilege upon islet allografts. Proc. Natl. Acad. Sci. USA (in the press).

  41. Ginsberg, H.S. et al. Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proc. Natl. Acad. Sci. USA 86, 3823–3827 (1989).

    Article  CAS  Google Scholar 

  42. Dong, G., Schulick, A.H., DeYoung, M.B. & Dichek, D.A. Identification of a cis-acting sequence in the human plasminogen activator inhibitor type-1 gene that mediates transforming growth factor-betai responsiveness in endothelium in vivo. J. Biol. Chem. 271, 29969–29977 (1996).

    Article  CAS  Google Scholar 

  43. Graham, F.L. & Prevec, L. Methods in Molecular Biology. 109–128 (Humana Press, Clifton, NJ, 1991).

    Google Scholar 

  44. Osorio, R.W., Ascher, N.L., Melzer, J.S. & Stock, P.G. & Stock, P.G. β2-Microglobulin gene disruption prolongs murine islet allograft survival in NOD mice. Trans. Proc. 26, 752 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, SM., Schneider, D., Lin, Z. et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 3, 738–743 (1997). https://doi.org/10.1038/nm0797-738

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0797-738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing