Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A functionally inactive p53 protein interatocarcinoma cells is activated by either DNA damage or cellular differentiation

Abstract

Testicular teratocarcinomas never contain p53 gene mutations even though these tumors express high levels of nuclear p53 protein. We have characterized two murine teratocarcinoma cell lines and find no evidence that endogenous p53–regulated genes are correspondingly upregulated. Differentiation of these teratocarcinoma cells with retinoic acid results in a marked decrease in p53 protein levels but is accompanied by a marked increase in p53–mediated transcriptional activity. Together these results support the hypothesis that the p53 protein in undifferentiated teratocarcinoma cells is transcriptionally inactive and accounts for the lack of selection for p53 gene mutations in this tumor type. These teratocarcinoma cells undergo p53–mediated apoptosis in response to DNA damage, which may explain the routine cures of human testicular tumors with combination chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pottern, L. & Goedert, J. Principles and Management of Testicular Cancer (ed. Javadpour, N.) 108–119 (Thieme, New York, 1986).

    Google Scholar 

  2. Champlin, R. & Gale, R. Acute myelogenous leukemia: Recent advances in therapy. Blood 69 1551–1562 (1987).

    CAS  PubMed  Google Scholar 

  3. Harris, C.C. & Hollstein, M. Clinical implications of the p53 tumor-suppressor gene. NewEngl. J. Med. 329, 1318–1327 (1993).

    CAS  Google Scholar 

  4. Levine, A.J. et al The role of the p53 tumor suppressor gene in tumorigenesis. Br. J. Cancer 69, 409–416 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Oren, M., Reich, N.C. & Levine, A.J. Regulation of the cellular p53 tumor antigen in teratocarcinoma cells and their differentiated progeny. Mol. Cell. Biol. 2 443–449 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartkova, J. et al. p53 protein alterations in human testicular cancer including pre-invasive intratubular germ-cell neoplasia. Int. J. Cancer 49, 196–202 (1991).

    CAS  PubMed  Google Scholar 

  7. Lewis, D., Sesterhenn, I., McCarthy, W. & Moul, J. Immunohistochemical expression of p53 tumor suppressor gene protein in adult germ cell testis tumors: Clinical correlation in stage I disease. J. Urol. 152, 418–423 (1994).

    CAS  PubMed  Google Scholar 

  8. Riou, G. et al. The p53 and mdm-2 genes in human testicular germ-cell tumors. Mol Carrinog. 12, 124–131 (1995).

    CAS  Google Scholar 

  9. Heimdal, K. et al. No germline TP3 mutations detected in familial and bilateral testicular cancers. Genes Chromosom. Cancer 6, 92–97 (1993).

    CAS  PubMed  Google Scholar 

  10. Peng, H.Q. et al. Mutations of the p53 gene do not occur in testis cancer. Cancer Res. 53, 3574–3578 (1993).

    CAS  PubMed  Google Scholar 

  11. Murty, V.V.V.S. et al. Allelic loss and somatic differentiation in human male germ cell tumors. Oncogene 9, 2245–2251 (1994).

    CAS  PubMed  Google Scholar 

  12. Schenkman, N.S. et al. Increased p53 protein does not correlate to p53 gene mutations in microdissected human testicular germ cell tumors. J. UroL 154, 617–621 (1995).

    CAS  PubMed  Google Scholar 

  13. Pennica, D. et al. The amino acid sequence of murine p53 determined from a cDNA clone. Virology 134, 477–483 (1984).

    CAS  PubMed  Google Scholar 

  14. Reich, N.C., Oren, M. & Levine, A.J. Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. Mol. Cell. Biol. 3, 2143–2150 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Momand, J., Zambetti, G.P., Olson, D.C., George, D. & Levine, A.J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53 mediated transactivation. Cell 69, 1237–1245 (1992).

    CAS  PubMed  Google Scholar 

  16. Oliner, J.D., Kinzler, K.W., Meltzer, P.S., George, D. & Vogelstein, B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358, 80–83 (1992).

    CAS  PubMed  Google Scholar 

  17. Finlay, C.A. The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol Cell. Biol. 13, 301–306 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fakharzadeh, S.S., Trusko, S.P. & George, D.L. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 10, 1565–1569 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gannon, J.V., Greaves, R., Iggo, R. & Lane, D.P. Activating mutations in p53 produce common conformational effects: A monoclonal antibody specific for the mutant form. EMBO J. 9, 1595–1602 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Olson, D. et al. Identification and characterization of multiple mdm-2 proteins and mdm-2-p53 protein complexes. Oncogene 8, 2353–2360 (1993).

    CAS  PubMed  Google Scholar 

  21. Barak, Y., Juven, T., Haffner, R. & Oren, M. mdm2 expression is induced by wild type p53 activity. EMBO J. 12, 461–468 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Haines, D.S., Landers, J.E., Engle, L.J. & George, D.L. Physical and functional interaction between wild-type p53 and mdm-2 proteins. Mol. Cell. Biol. 14, 1171–1178 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Michalovitz, D., Halevy, O. & Oren, M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62, 671–680 (1990).

    CAS  PubMed  Google Scholar 

  24. Wu, X., Bayle, J.H., Olson, D. & Levine, A.J. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7, 1126–1132 (1993).

    CAS  PubMed  Google Scholar 

  25. Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R.W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304–6311 (1991).

    CAS  PubMed  Google Scholar 

  26. El-Deiry, W.S. et al. WAF1/CIP1 is induced in p53-mediated G: arrest and apop-tosis. Cancer Res. 54, 1169–1174 (1994).

    CAS  PubMed  Google Scholar 

  27. Perry, M.E., Piette, J., Zawadzki, J., Harvey, D. & Levine, A.J. The mdm-2 gene is induced in response to UV light in a p53-dependent manner. Proc. Natl. Acad. Sci.USA 90, 11623–11627 (1993).

    CAS  PubMed  Google Scholar 

  28. Shaw, P. et al. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci. USA 89, 4495–4499 (1992).

    CAS  PubMed  Google Scholar 

  29. Yonish-Rouach, E. et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345–347 (1991).

    CAS  PubMed  Google Scholar 

  30. Strickland, S., Smith, K. & Marotti, K. Hormonal induction of differentiation in teratocarcinoma stem cells: Generation of parietal endoderm by retinoic acid and dibutyryl cAMP. Cell 21 (1980).

    CAS  PubMed  Google Scholar 

  31. Lucje-Huhle, C. & Herrlich, P. Retionic-acid-induced differentiation prevents gene amplification in teratocarcinoma stem cells. Int. J. Cancer 47, 461–465 (1991).

    Google Scholar 

  32. Livingstone, L.R. et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70, 923–935 (1992).

    CAS  PubMed  Google Scholar 

  33. Harvey, M., McArther, M., Montgomery, C., Bradley, A. & Donehower, L. Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J. 7, 938–943 (1993).

    CAS  PubMed  Google Scholar 

  34. Rotter, V. et al. Mice with reduced levels of p53 protein exhibit the testicular giant-cell degenerative syndrome. Proc. Natl Acad. Sci. USA 90, 9075–9079 (1993).

    CAS  PubMed  Google Scholar 

  35. Rao, L. et al. The adenovirus El A proteins induce apoptosis which is inherited by the E1B 19 Kd and Bel proteins. Proc. Natl Acad. Sci. USA 89, 7742–7746 (1992).

    CAS  PubMed  Google Scholar 

  36. Hupp, T., Meek, D., Midgley, C.A. & Lane, D. Regulation of the specific DNA binding function of p53. Cell 71, 875–886 (1992).

    CAS  PubMed  Google Scholar 

  37. Thut, C.J., Chen, J.L., Klemin, R. & Tjian, R. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267, 100–104 (1995).

    CAS  PubMed  Google Scholar 

  38. Lu, H. & Levine, A.J. Human TAF-31 is a transcriptional coactivation of the p53 protein. Proc. Natl. Acad. Sci. USA 92, 5154 (1995).

    CAS  PubMed  Google Scholar 

  39. Clarke, A.R. et al Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    CAS  PubMed  Google Scholar 

  40. Lotem, J. & Sachs, L. Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood 82, 1092–1096 (1993).

    CAS  PubMed  Google Scholar 

  41. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    CAS  PubMed  Google Scholar 

  42. Evan, G.I. et al. Induction of apoptosis in n'broblasts by c-myc protein. Cell 69, 119–128 (1992).

    CAS  PubMed  Google Scholar 

  43. Hermeking, H. & Eick, D. Mediation of c-Myc-induced apoptosis by p53. Science 265, 2091–2093 (1994).

    CAS  PubMed  Google Scholar 

  44. Debbas, M. & White, E. Wild-type p53 mediates apoptosis by E1A which is inhibited by E1B. Genes Dev. 7, 546–554 (1993).

    CAS  PubMed  Google Scholar 

  45. Wu, X. & Levine, A.J. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl. Acad. Sci. USA 91, 3602–3606 (1994).

    CAS  PubMed  Google Scholar 

  46. Canman, C., Gilmer, T., Coutts, S. & Kastan, M. Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev. 9, 600–611 (1995).

    CAS  PubMed  Google Scholar 

  47. Campisi, J., Gray, H., Pardee, A., Dean, M. & Sonnenshein, G. Cell cycle control of c-myc but not c-ras expression is lost following transformation. Cell 36, 241–247 (1984).

    CAS  PubMed  Google Scholar 

  48. Imperiaie, M., Kao, H.-T., Feldman, L., Nevins, J. & Strickland, S. Common control of the heat shock gene and early adenovirus-genes: Evidence for a cellular elA-like activity. Mol. Cell. Biol 4, 867–874 (1984).

    Google Scholar 

  49. Strohmeyer, T. et al. Correlation between retinoblastoma gene expression and differentiation in human testicular tumors. Proc. Natl. Acad. Sci. USA 88, 6662–6666 (1991).

    CAS  PubMed  Google Scholar 

  50. Hen, R., Borrelli, E., Fromental, D., Sassone-Corsi, P. & Chambon, P. A mutated polyoma virus enhancer which is active in undifferentiated embryonal carcinoma cells is not repressed by adenovirus-2 E1A products. Nature 321, 249–251 (1986).

    CAS  PubMed  Google Scholar 

  51. Slack, R.S. et al Cells differentiating into neuroectoderm undergo apoptosis in the absence of functional retinoblastoma family proteins. J. Cell Biol 129, 779–788 (1995).

    CAS  PubMed  Google Scholar 

  52. Langley, R., Palayoor, S., Coleman, C., Bump, E. Radiation-induced apoptosis in F9 teratocarcinoma cells. Int. J. Radiat. Biol 65, 605–610 (1994).

    CAS  PubMed  Google Scholar 

  53. Schmid, P., Lorenz, A., Hameister, H. & Montenarh, M. Expression of p53 during mouse embryogenesis. Development 113, 857–865 (1991).

    CAS  PubMed  Google Scholar 

  54. Mora, P., Chandrasekaran, K. & McFarland, V. An embryo protein induced by SV40 virus transformation of mouse cells. Nature 288, 722–724 (1980).

    CAS  PubMed  Google Scholar 

  55. Nicol, C., Harrison, M., Laposa, G., Gimelshtein, I. & Wells, P. A teratologic suppressor role for pS3 in benzo[ajpyrene-treated transgenic p53-deficient mice. Nature Genet. 10, 181–187 (1995).

    CAS  PubMed  Google Scholar 

  56. Marechal, V., Elenbaas, B., Piette, J., Nicolas, J.-C. & Levine, A.J. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol. Cell. Biol. 14, 7414–7420 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutzker, S., Levine, A. A functionally inactive p53 protein interatocarcinoma cells is activated by either DNA damage or cellular differentiation. Nat Med 2, 804–810 (1996). https://doi.org/10.1038/nm0796-804

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0796-804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing