Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Positron emission tomography imaging for herpes virus infection: Implications for oncolytic viral treatments of cancer

Abstract

Molecular therapy using viruses would benefit greatly from a non-invasive modality for assessing dissemination of viruses. Here we investigated whether positron emission tomography (PET) scanning using [124I]-5-iodo-2′-fluoro-1-β-d-arabinofuranosyl-uracil (FIAU) could image cells infected with herpes simplex viruses (HSV). Using replication-competent HSV-1 oncolytic viruses with thymidine kinase (TK) under control of different promoters, we demonstrate that viral infection, proliferation and promoter characteristics all interact to influence FIAU accumulation and imaging. In vivo, as few as 1 × 107 viral particles injected into a 0.5-cm human colorectal tumor can be detected by [124I]FIAU PET imaging. PET signal intensity is significantly greater at 48 hours compared with that at 8 hours after viral injection, demonstrating that PET scanning can detect changes in TK activity resulting from local viral proliferation. We also show the ability of FIAU-PET scanning to detect differences in viral infectivity at 0.5 log increments. Non-invasive imaging might be useful in assessing biologically relevant distribution of virus in therapies using replication-competent HSV.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2: FIAU accumulation rates (Ki FIAU) demonstrate viral TK activity in HCT8 cells after infection with each of 3 HSV-1 recombinants.
Figure 3: Transaxial PET images of viral-treated human colorectal flank tumors.
Figure 4: Histochemistry and autoradiography of viral treated tumors.
Figure 1: Genomic structure for wild-type HSV-1(F) strain virus and 3 derivative recombinants.

References

  1. Jolly, D. Viral vectors for gene therapy. Cancer Gene Ther. 1, 51–64 (1994).

    CAS  PubMed  Google Scholar 

  2. Caruso, M. et al. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc. Natl. Acad. Sci. USA. 90, 7024–7028 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Topf, N., Worgall, S., Hackett, N.R. & Crystal, R.G. Regional 'pro-drug' gene therapy: Intravenous administration of an adenoviral vector expressing the E. coli cytosine deaminase gene and systemic administration of 5-fluorocytosine suppresses growth of hepatic metastasis of colon carcinoma. Gene Ther. 5, 507–513 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Karpoff, H.M. et al. Prevention of hepatic tumor metastases in rats with herpes viral vaccines and gamma-interferon. J. Clin. Invest. 99, 799–804 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mineta, T., Rabkin, S.D., Yazaki, T., Hunter, W.D. & Martuza, R.L. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nature Med. 1, 938–943 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Advani, S.J., Chung, S., Yan, S.Y., et al. Replication-competent, nonneuroinvasive genetically engineered herpes virus is highly effective in the treatment of therapy-resistant experimental human tumors. Cancer Res. 59, 2055–2058 (1999).

    CAS  PubMed  Google Scholar 

  7. Heise, C. et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med. 3, 639–645 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Lorence, R.M. et al. Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy. Cancer Res. 54, 6017–6021 (1994).

    CAS  PubMed  Google Scholar 

  9. Yazaki, T., Manz, H.J., Rabkin, S.D. & Martuza, R.L. Treatment of human malignant meningiomas by G207, a replication-competent multimutated herpes simplex virus 1. Cancer Res. 55, 4752–4756 (1995).

    CAS  PubMed  Google Scholar 

  10. Kooby, D.A. et al. Oncolytic viral therapy for human colorectal cancer and liver metastases using a multimutated herpes simplex virus type-1 (G207). FASEB J. 6, 499–504 (1999).

    Google Scholar 

  11. Yoon, S.S. et al. An oncolytic herpes simplex virus type 1 selectively destroys diffuse liver metastases from colon carcinoma. FASEB J. 14, 301–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Carew, J.F., Kooby, D., Halterman, M.W., Federoff, H.J. & Fong, Y. Selective infection and cytolysis of human head and neck squamous cell carcinoma with sparing of normal mucosa by a cytolytic herpes simplex virus type 1 (G207). Hum. Gene Ther. 10, 1599–1606 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Bennett, J. et al. Antitumor efficacy of regional oncolytic viral therapy for peritoneally disseminated cancer. J. Mol. Med. 78, 166–174 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Toyoizumi, T. et al. Combined therapy with chemotherapeutic agent and herpes simplex virus type 1 ICP34.5 mutant (HSV-1716) in human non-small cell lung cancer. Hum. Gene Ther. 10, 3013–3029 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Tjuvajev, J. et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res. 58, 4333–4341 (1998).

    CAS  PubMed  Google Scholar 

  16. Tjuvajev, J.G. et al. Imaging the expression of transfected genes in vivo. Cancer Res. 55, 6126–6132 (1995).

    CAS  PubMed  Google Scholar 

  17. Gambhir, S.S. et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl. Acad. Sci. USA 96, 2333–2338 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alauddin, M.M., Conti, P.S., Mazza, S.M., Hamzeh, F.M. & Lever, J.R. Synthesis of 9-[(3-[18F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]FHPG): A potential imaging agent of viral infection and gene therapy using PET. Nucl. Med. Biol. 23, 787–792 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Meignier, B., Longnecker, R. & Roizman, B. In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: Construction and evaluation in rodents. J. Infect. Dis. 158, 602–614 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. DeLuca N.A. & Schaffer, P.A. Physical and functional domains of the herpes simplex virus transcriptional regulatory protein ICP4. J. Virol. 62, 732–743 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tjuvajev, J.G. et al. Imaging adenoviral-mediated herpes simplex virus thymidine kinase gene transfer and expression in vivo. Cancer Res. 59, 5186–5193 (1999).

    CAS  PubMed  Google Scholar 

  22. Tjuvajev, J.G. et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: A potential method for monitoring clinical gene therapy. Cancer Res. 56, 4087–4095 (1996).

    CAS  PubMed  Google Scholar 

  23. Rampling, R. et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther. 7, 859–866 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Markert, J. et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: Results of a phase I trial. Gene Ther. 7, 867–874 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Orkin, S.H. & Motulsky, A.G. Report and recommendations of the panel to assess the NIH investment in research on gene therapy; National Institutes of Health Report. 7 December, 135 (1995).

  26. Zuckerman, J.B. et al. A phase I study of adenovirus-mediated transfer of the human cystic fibrosis transmembrane conductance regulator gene to a lung segment of individuals with cystic fibrosis. Hum. Gene Ther. 10, 2973–2985 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Tjuvajev, J.G. et al. A general approach to the non-invasive imaging of transgenes using cis-linked herpes simplex virus thymidine kinase. Neoplasia 1, 315–320 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McGeoch, D.J., Dolan, A., Donald, S. & Rixon, F.J. Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. J. Mol. Biol. 181, 1–13 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. Balatoni, J., Finn, R., Tjuvajev, J., Larson, S. & Blasberg, R. Synthesis and quality assurance of radioiodinated 2′-Fluoro-2′-deoxy-1-d-arabinofuranosyl-5-iodo-uracil. J. Labelled Compound. Radiopharm. 40, 103 (1997).

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants RO1CA75416, RO1CA72632, and RO1CA61524 (to Y.F.) and RO1CA69769, R24CA83084 and P50CA86438 (R.B.) from the National Institutes of Health; grant MBC-99366 from the American Cancer Society; and grant DE-FG02-86ER60407 06 from the Department of Energy (to R.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuman Fong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, J., Tjuvajev, J., Johnson, P. et al. Positron emission tomography imaging for herpes virus infection: Implications for oncolytic viral treatments of cancer. Nat Med 7, 859–863 (2001). https://doi.org/10.1038/89991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/89991

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing