Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fas/FADD-mediated activation of a specific program of inflammatory gene expression in vascular smooth muscle cells

Abstract

Apoptosis of smooth muscle cells is a common feature of vascular lesions but its pathophysiological significance is not known. We demonstrate that signals initiated by regulated Fas-associated death domain protein overexpression in rat vascular smooth muscle cells in the carotid artery induce expression of monocyte-chemoattractant protein-1 and interleukin-8, and cause massive immigration of macrophages in vivo. These chemokines, and a specific set of other pro-inflammatory genes, are also upregulated in human vascular smooth muscle cells during Fas-induced apoptosis, in part through a process that requires interleukin-1α activation. Induction of a pro-inflammatory program by apoptotic vascular smooth muscle cells may thus contribute to the pathogenesis of vascular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tet-regulation of FADD expression causes SMC apoptosis in culture and in vivo.
Figure 2: FADD expression results in recruitment of macrophages into the neointima.
Figure 3: FADD expression results in upregulation of MCP-1 and Il-8 transcript levels and activity.
Figure 4: Role of IL-1α and caspases in regulating MCP-1 expression.

Similar content being viewed by others

References

  1. Geng, Y.J. & Libby, P. Evidence for apoptosis in advanced human atheroma. Am. J. Pathol. 147, 251– 266 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Han, D.K. et al. Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am. J. Pathol. 147, 267– 277 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Perlman, H., Maillard, L., Krasinski, K. & Walsh, K. Evidence for the rapid onset of apoptosis in medial smooth muscle cells after balloon injury. Circulation 95, 981– 987 (1997).

    Article  CAS  Google Scholar 

  4. Kollum, M. et al. Apoptosis after stent implantation compared with balloon angioplasty in rabbits. Role of macrophages. Arterioscler. Thromb. Vasc. Biol. 17, 2383–2388 ( 1997).

    Article  CAS  Google Scholar 

  5. Geng, Y.J., Henderson, L.E., Levesque, E.B., Muszynski, M. & Libby, P. Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 17, 2200–2228 (1997).

    Article  CAS  Google Scholar 

  6. Kockx, M.M. et al. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 97, 2307–2315 (1998).

    Article  CAS  Google Scholar 

  7. Hopkinson-Woolley, J., Hughes, D., Gordon, S. & Martin, P. Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse . J Cell Sci 107, 1159– 1167 (1994).

    PubMed  Google Scholar 

  8. Savill, J., Fadok, V., Henson, P. & Haslett, C. Phagocyte recognition of cells undergoing apoptosis. Immunol. Today 14, 131–136 (1993).

    Article  CAS  Google Scholar 

  9. Devitt, A. et al. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392, 505– 509 (1998).

    Article  CAS  Google Scholar 

  10. Biancone, L. et al. Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J. Exp. Med. 186, 147– 152 (1997).

    Article  CAS  Google Scholar 

  11. Allison, J., Georgiou, H.M., Strasser, A. & Vaux, D.L. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts . Proc. Natl. Acad. Sci. USA 94, 3943– 3947 (1997).

    Article  CAS  Google Scholar 

  12. Seino, K., Kayagaki, N., Okumura, K. & Yagita, H. Antitumor effect of locally produced CD95 ligand. Nature Med. 3, 165–170 (1997).

    Article  CAS  Google Scholar 

  13. Miwa, K. et al. Caspase 1-independent IL-1beta release and inflammation induced by the apoptosis inducer Fas ligand. Nature Med. 4, 1287–1292 (1998).

    Article  CAS  Google Scholar 

  14. Chinnaiyan, A.M., O'Rouke, K., Tewari, M. & Dixit, V.M. FADD, a new death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505– 512 (1995).

    Article  CAS  Google Scholar 

  15. Clowes, M.M. et al. Long-term biological response of injured rat carotid artery seeded with smooth muscle cells expressing retrovirally introduced human genes . J. Clin. Invest. 93, 644– 651 (1994).

    Article  CAS  Google Scholar 

  16. Zagorski, J. & DeLarco, J.E. Rat CINC (cytokine-induced neutrophil chemoattractant) is the homolog of the human GRO proteins but is encoded by a single gene. Biochem. Biophys. Res. Commun. 190, 104–110 (1993).

    Article  CAS  Google Scholar 

  17. Belvisi, M.G. et al. Induction of cyclo-oxygenase-2 by cytokines in human cultured airway smooth muscle cells: new inflammatory role of this cell type. Br. J. Pharmacol. 120, 910–916 (1997).

    Article  CAS  Google Scholar 

  18. Huang, D.C. et al. Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-x(L). Proc. Natl. Acad. Sci. USA 96, 14871–14876 (1999).

    Article  CAS  Google Scholar 

  19. Wu, J.C. & Fritz, L.C. Irreversible caspase inhibitors: tools for studying apoptosis. Methods 17, 320–328 (1999).

    Article  CAS  Google Scholar 

  20. Wang, J.M. et al. Expression of monocyte chemotactic protein and interleukin-8 by cytokine-activated human vascular smooth muscle cells. Arterioscler. Thromb. 11, 1166–1174 ( 1991).

    Article  CAS  Google Scholar 

  21. Arend, W.P. Interleukin-1 receptor antagonist. Adv. Immunol. 54 , 167–227 (1993).

    Article  CAS  Google Scholar 

  22. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126 ( 1999).

    Article  CAS  Google Scholar 

  23. Verheyen, A.K., Vlaminckx, E.M., Lauwers, F.M., Saint-Guillain, M.L. & Borgers, M.J. Identification of macrophages in intimal thickening of rat carotid arteries by cytochemical localization of purine nucleoside phosphorylase. Arteriosclerosis 8, 759–767 ( 1988).

    Article  CAS  Google Scholar 

  24. Wisniewski, H.G. et al. TNF/IL-1-inducible protein TSG-6 potentiates plasmin inhibition by inter-alpha-inhibitor and exerts a strong anti-inflammatory effect in vivo. J. Immunol. 156, 1609– 1615 (1996).

    CAS  PubMed  Google Scholar 

  25. Saas, P. et al. CD95 (Fas/Apo-1) as a receptor governing astrocyte apoptotic or inflammatory responses: a key role in brain inflammation? J. Immunol. 162, 2326–2333 (1999).

    CAS  PubMed  Google Scholar 

  26. Abreu-Martin, M.T., Vidrich, A., Lynch, D.H. & Targan, S.R. Divergent induction of apoptosis and IL-8 secretion in HT-29 cells in response to TNF-alpha and ligation of Fas antigen. J. Immunol. 155, 4147–4154 (1995).

    CAS  PubMed  Google Scholar 

  27. Sekine, C. et al. Fas-mediated stimulation induces IL-8 secretion by rheumatoid arthritis synoviocytes independently of CPP32-mediated apoptosis. Biochem. Biophys. Res. Commun. 228, 14– 20 (1996).

    Article  CAS  Google Scholar 

  28. Zhang, J., Cado, D., Chen, A., Kabra, N.H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 ( 1998).

    Article  CAS  Google Scholar 

  29. Yeh, W.C. et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954–1958 (1998).

    Article  CAS  Google Scholar 

  30. Newton, K., Harris, A.W., Bath, M.L., Smith, K.G.C. & Strasser, A. A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J. 17, 706– 718 (1998).

    Article  CAS  Google Scholar 

  31. Sayers, T.J. et al. Effect of cytokines on polymorphonuclear neutrophil infiltration in the mouse. Prostaglandin- and leukotriene-independent induction of infiltration by IL-1 and tumor necrosis factor. J. Immunol. 141, 1670–1677 (1988).

    CAS  PubMed  Google Scholar 

  32. Nelken, N.A., Coughlin, S.R., Gordon, D. & Wilcox, J.N. Monocyte chemoattractant protein-1 in human atheromatous plaques. J. Clin. Invest. 88, 1121–1127 (1991).

    Article  CAS  Google Scholar 

  33. Reckless, J., Rubin, E.M., Verstuyft, J.B., Metcalfe, J.C. & Grainger, D.J. Monocyte chemoattractant protein-1 but not tumor necrosis factor-alpha is correlated with monocyte infiltration in mouse lipid lesions. Circulation 99, 2310–2316 (1999).

    Article  CAS  Google Scholar 

  34. Koch, A.E. et al. Enhanced production of the chemotactic cytokines interleukin-8 and monocyte chemoattractant protein-1 in human abdominal aortic aneurysms . Am. J. Pathol. 142, 1423– 1431 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gerszten, R.E. et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398, 718–723 (1999).

    Article  CAS  Google Scholar 

  36. Boring, L., Gosling, J., Cleary, M. & Charo, I.F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    Article  CAS  Google Scholar 

  37. Gu, L. et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell 2, 275–281 (1998).

    Article  CAS  Google Scholar 

  38. Boisvert, W.A., Santiago, R., Curtiss, L.K. & Terkeltaub, R.A. A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor- deficient mice . J. Clin. Invest. 101, 353– 363 (1998).

    Article  CAS  Google Scholar 

  39. Shockett, P. et al. A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc. Natl. Acad. Sci. USA 92, 6522– 6526 (1995).

    Article  CAS  Google Scholar 

  40. Kiener, P.A. et al. Differential induction of apoptosis by Fas-Fas ligand interactions in human monocytes and macrophages. J. Exp. Med. 185 , 1511–1516 (1997).

    Article  CAS  Google Scholar 

  41. Lie, Y.S. & Petropoulos, C.J. Advances in quantitative PCR technology: 5¢ nuclease assays. Curr Opin Biotechnol 9, 43–48 (1998).

    Article  CAS  Google Scholar 

  42. Frevert, C.W., Wong, V.A., Goodman, R.B., Goodwin, R. & Martin, T.R. Rapid fluorescence-based measurement of neutrophil migration in vitro. J. Immunol. Methods 213, 41–52 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Clowes, H. Lea and E. Mulvihill for instruction and advice. This work was supported by US Public Health Service grants HL03174 and HL62995 and by grants from the Deutsche Forschungsgemeinschaft and F. Hoffmann-La Roche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Bowen-Pope.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaub, F., Han, D., Conrad Liles, W. et al. Fas/FADD-mediated activation of a specific program of inflammatory gene expression in vascular smooth muscle cells. Nat Med 6, 790–796 (2000). https://doi.org/10.1038/77521

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77521

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing