Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection

Abstract

Elevated expression of heat-shock proteins (HSPs) can benefit a microbial pathogen struggling to penetrate host defenses during infection, but at the same time might provide a crucial signal alerting the host immune system to its presence. To determine which of these effects predominate, we constructed a mutant strain of Mycobacterium tuberculosis that constitutively overexpresses Hsp70 proteins. Although the mutant was fully virulent in the initial stage of infection, it was significantly impaired in its ability to persist during the subsequent chronic phase. Induction of microbial genes encoding HSPs might provide a novel strategy to boost the immune response of individuals with latent tuberculosis infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure, regulation and mutagenesis of the hsp70 (dnaK) operon.
Figure 2: Constitutive overexpression of hsp70 proteins in the HspR mutant.
Figure 3: Growth and survival of the wild type and ΔhspR mutant in stationary phase, heat stress conditions and bone marrow-derived macrophages.
Figure 4: Characterization of the ΔhspR mutant in a chronic infection model.
Figure 5: Lung morphology in mice infected with wild-type and mutant strains.
Figure 6: Infection with the ΔhspR mutant increases IFN-γ production by splenocytes.

Similar content being viewed by others

References

  1. Lindquist, S. & Craig, E.A. The heat-shock proteins. Annu. Rev. Genet. 22, 631–677 (1988).

    Article  CAS  Google Scholar 

  2. Hartl, F.U. Molecular chaperones in cellular protein folding. Nature 381, 571–579 (1996).

    Article  CAS  Google Scholar 

  3. Buchmeier, N.A. & Heffron, F. Induction of Salmonella stress proteins upon infection of macrophages. Science 248, 730–732 (1990).

    Article  CAS  Google Scholar 

  4. Lee, B.Y. & Horwitz, M.A. Identification of macrophage and stress-induced proteins of Mycobacterium tuberculosis. J. Clin. Invest. 96, 245–249 (1995).

    Article  CAS  Google Scholar 

  5. Qoronfleh, M.W., Bortner, C.A., Schwartzberg, P. & Wilkinson, B.J. Enhanced levels of Staphylococcus aureus stress protein GroEL and DnaK homologs early in infection of human epithelial cells. Infect. Immun. 66, 3024–3027 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cohen, I.R. & Young, D.B. Autoimmunity, microbial immunity and the immunological homunculus. Immunol. Today 12, 105–110 (1991).

    Article  CAS  Google Scholar 

  7. Young, D., Lathigra, R., Hendrix, R., Sweetser, D. & Young, R.A. Stress proteins are immune targets in leprosy and tuberculosis. Proc. Natl. Acad. Sci. USA 85, 4267–4270 (1988).

    Article  CAS  Google Scholar 

  8. Cho, B.K. et al. A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat-shock fusion proteins. Immunity 12, 263–272 (2000).

    Article  CAS  Google Scholar 

  9. Suto, R. & Srivastava, P.K. A mechanism for the specific immunogenicity of heat-shock protein-chaperoned peptides. Science 269, 1585–1588 (1995).

    Article  CAS  Google Scholar 

  10. Arnold-Schild, D. et al. Cutting edge: receptor-mediated endocytosis of heat-shock proteins by professional antigen-presenting cells. J. Immunol. 162, 3757–3760 (1999).

    CAS  PubMed  Google Scholar 

  11. Asea, A. et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature Med. 6, 435–442 (2000).

    Article  CAS  Google Scholar 

  12. Castellino, F. et al. Receptor-mediated uptake of Antigen/Heat-shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J. Exp. Med. 191, 1957–1964 (2000).

    Article  CAS  Google Scholar 

  13. Srivastava, P.K., Menoret, A., Basu, S., Binder, R.J. & McQuade, K.L. Heat-shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8, 657–665 (1998).

    Article  CAS  Google Scholar 

  14. Lowrie, D.B. et al. Therapy of tuberculosis in mice by DNA vaccination. Nature 400, 269–271 (1999).

    Article  CAS  Google Scholar 

  15. Mangan, J.A., Sole, K.M., Mitchison, D.A. & Butcher, P.D. An effective method of RNA extraction from bacteria refractory to disruption, including mycobacteria. Nucleic Acids Res. 25, 675–676 (1997).

    Article  CAS  Google Scholar 

  16. Young, D.B. & Garbe, T.R. Heat-shock proteins and antigens of Mycobacterium tuberculosis. Infect. Immun. 59, 3086–3093 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Grossman, A.D., Erickson, J.W. & Gross, C.A. The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38, 383–390 (1984).

    Article  CAS  Google Scholar 

  18. Hecker, M., Schumann, W. & Volker, U. Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 19, 417–428 (1996).

    Article  CAS  Google Scholar 

  19. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  Google Scholar 

  20. Bucca, G., Hindle, Z. & Smith, C.P. Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein. J. Bacteriol. 179, 5999–6004 (1997).

    Article  CAS  Google Scholar 

  21. Spohn, G. & Scarlato, V. The autoregulatory HspR repressor protein governs chaperone gene transcription in Helicobacter pylori. Mol. Microbiol. 34, 663–674 (1999).

    Article  CAS  Google Scholar 

  22. Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C. & Zylicz, M. Escherichia coli DnaJ and GrpE heat-shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA 88, 2874–2878 (1991).

    Article  CAS  Google Scholar 

  23. Grandvalet, C., de Crecy-Lagard, V. & Mazodier, P. The ClpB ATPase of Streptomyces albus G belongs to the HspR heat-shock regulon. Mol. Microbiol. 31, 521–532 (1999).

    Article  CAS  Google Scholar 

  24. Bucca, G., Brassington, A.M., Schonfeld, H.J. & Smith, C.P. The HspR regulon of streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co-repressordagger. Mol. Microbiol. 38, 1093–1103. (2000).

    Article  CAS  Google Scholar 

  25. Pelicic, V., Reyrat, J.M. & Gicquel, B. Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J Bacteriol 178, 1197–1199 (1996).

    Article  CAS  Google Scholar 

  26. Parish, T., Mahenthiralingam, E., Draper, P., Davis, E.O. & Colston, M.J. Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology 143, 2267–2276 (1997).

    Article  CAS  Google Scholar 

  27. Rhoades, E.R., Frank, A.A. & Orme, I.M. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber. Lung. Dis. 78, 57–66 (1997).

    Article  CAS  Google Scholar 

  28. Motohashi, K., Watanabe, Y., Yohda, M. & Yoshida, M. Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc. Natl. Acad. Sci. USA 96, 7184–7189 (1999).

    Article  CAS  Google Scholar 

  29. Blum, P., Ory, J., Bauernfeind, J. & Krska, J. Physiological consequences of DnaK and DnaJ overproduction in Escherichia coli. J. Bacteriol. 174, 7436–7444 (1992).

    Article  CAS  Google Scholar 

  30. Grandvalet, C., Servant, P. & Mazodier, P. Disruption of hspR, the repressor gene of the dnaK operon in Streptomyces albus G. Mol. Microbiol. 23, 77–84 (1997).

    Article  CAS  Google Scholar 

  31. VanBogelen, R.A., Acton, M.A. & Neidhardt, F.C. Induction of the heat-shock regulon does not produce thermotolerance in Escherichia coli. Genes Dev. 1, 525–531 (1987).

    Article  CAS  Google Scholar 

  32. Camacho, L.R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34, 257–267 (1999).

    Article  CAS  Google Scholar 

  33. Cox, J.S., Chen, B., McNeil, M. & Jacobs, W.R. Jr . Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).

    Article  CAS  Google Scholar 

  34. Manabe, Y.C., Saviola, B.J., Sun, L., Murphy, J.R. & Bishai, W.R. Attenuation of virulence in Mycobacterium tuberculosis expressing a constitutively active iron repressor. Proc. Natl. Acad. Sci. USA 96, 12844–12848 (1999).

    Article  CAS  Google Scholar 

  35. Glickman, M.S., Cox, J.S. & Jacobs, W.R. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Molecular Cell. 5, 717–727 (2000).

    Article  CAS  Google Scholar 

  36. McKinney, J.D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000).

    Article  CAS  Google Scholar 

  37. Parrish, N.M., Dick, J.D. & Bishai, W.R. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol. 6, 107–112 (1998).

    Article  CAS  Google Scholar 

  38. Wu, S.C., Ye, R., Wu, X.C., Ng, S.C. & Wong, S.L. Enhanced secretory production of a single-chain antibody fragment from Bacillus subtilis by coproduction of molecular chaperones. J. Bacteriol. 180, 2830–2835 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Baldwin, S.L. et al. Evaluation of new vaccines in the mouse and guinea pig model of tuberculosis. Infect. Immun. 66, 2951–2959 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang, Q., Richmond, J.F.L., Suzue, K., Eisen, H.N. & Young, R.A. In vivo cytotoxic T lymphocyte elicitation by mycobacterial heat-shock protein 70 fusion proteins maps to a discrete domain and is CD4+ T cell independent. J. Exp. Med. 191, 403–408 (2000).

    Article  CAS  Google Scholar 

  41. Dye, C., Scheele, S., Dolin, P., Pathania, V. & Raviglione, M.C. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282, 677–686 (1999).

    Article  CAS  Google Scholar 

  42. Mehlert, A. & Young, D.B. Biochemical and antigenic characterization of the Mycobacterium tuberculosis 71kD antigen, a member of the 70kD heat-shock protein family. Mol. Microbiol. 3, 125–130 (1989).

    Article  CAS  Google Scholar 

  43. Dussurget, O. et al. Role of Mycobacterium tuberculosis copper-zinc superoxide dismutase. Infect. Immun. 69, 529–533 (2001).

    Article  CAS  Google Scholar 

  44. De Smet, K.A., Kempsell, K.E., Gallagher, A., Duncan, K. & Young, D.B. Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 145, 3177–3184 (1999).

    Article  CAS  Google Scholar 

  45. Simmons, C.P. et al. Mucosal delivery of a respiratory syncytial virus CTL peptide with enterotoxin-based adjuvants elicits protective immunopathogenic, and immunoregulatory antiviral CD8+ T cell responses. J. Immunol. 166, 1106–1122 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Robertson for helpful discussions; H. Cooper and R. Shrimpton for assistance in protein purification; and D. Turner for help with macrophage preparations. Thanks also to the Hugget laboratory. This work was supported by a Wellcome Trust Programme Grant and an EMBO Fellowship (to P.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham R. Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, G., Snewin, V., Walzl, G. et al. Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection. Nat Med 7, 732–737 (2001). https://doi.org/10.1038/89113

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing