Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A principal target of human immunity to malaria identified by molecular population genetic and immunological analyses

Abstract

New strategies are required to identify the most important targets of protective immunity in complex eukaryotic pathogens. Natural selection maintains allelic variation in some antigens of the malaria parasite Plasmodium falciparum1,2,3. Analysis of allele frequency distributions could identify the loci under most intense selection4,5,6,7. The merozoite surface protein 1 (Msp1) is the most-abundant surface component on the erythrocyte-invading stage of P. falciparum8,9,10. Immunization with whole Msp1 has protected monkeys completely against homologous11 and partially against non-homologous12 parasite strains. The single-copy msp1 gene, of about 5 kilobases, has highly divergent alleles13 with stable frequencies in endemic populations14,15. To identify the region of msp1 under strongest selection to maintain alleles within populations, we studied multiple intragenic sequence loci in populations in different regions of Africa and Southeast Asia. On both continents, the locus with the lowest inter-population variance in allele frequencies was block 2, indicating selection in this part of the gene. To test the hypothesis of immune selection, we undertook a large prospective longitudinal cohort study. This demonstrated that serum IgG antibodies against each of the two most frequent allelic types of block 2 of the protein were strongly associated with protection from P. falciparum malaria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hughes, M. K. & Hughes, A. L. Natural selection on Plasmodium surface proteins. Mol. Biochem. Parasitol. 71, 99–113 (1995).

    Article  CAS  Google Scholar 

  2. Conway, D.J. Natural selection on polymorphic malaria antigens and the search for a vaccine. Parasitol. Today 13, 26–29 (1997).

    Article  CAS  Google Scholar 

  3. Escalante, A.A., Lal, A.A. & Ayala, F.J. Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics 149, 189–202 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Berry, A. & Kreitman, M. Molecular analysis of an allozyme cline: Alcohol dehydrogenase in Drosophila melanogaster on the east coast of North America. Genetics 134, 869–893 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Taylor, M.F.J., Shen, Y. & Kreitman, M.E. A population genetic test of selection at the molecular level. Science 270, 1497–1499 (1995).

    Article  CAS  Google Scholar 

  6. McDonald, J.H. in Non-Neutral Evolution: Theories and Molecular Data. (ed. Golding, B.) 88–100 (Chapman–Hall, London, UK, 1994).

    Book  Google Scholar 

  7. Beaumont, M.A. & Nichols, R.A. Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Lond. B 263, 1619–1626 (1996).

    Article  Google Scholar 

  8. Holder, A.A. et al. Primary structure of the precursor to the three major surface antigens of Plasmodium falciparum merozoites. Nature 317, 270–273 (1985).

    Article  CAS  Google Scholar 

  9. McBride, J.S. & Heidrich, H.-G. Fragments of the polymorphic Mr 185 000 glycoprotein from the surface of isolated Plasmodium falciparum merozoites form an antigenic complex. Mol. Biochem. Parasitol. 23, 71–84 (1987).

    Article  CAS  Google Scholar 

  10. Blackman, M.J., Heidrich, H.-G., Donachie, S., McBride, J.S. & Holder, A.A. A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J. Exp. Med. 172, 379–382 (1990).

    Article  CAS  Google Scholar 

  11. Siddiqui, W.A. et al. Merozoite surface coat precursor protein completely protects Aotus monkeys against Plasmodium falciparum malaria. Proc. Natl. Acad. Sci., USA 84, 3014–3018 (1987).

    Article  CAS  Google Scholar 

  12. Hall, R. et al. Major surface antigen gene of a human malaria parasite cloned and expressed in bacteria. Nature 311, 379–382 (1984).

    Article  CAS  Google Scholar 

  13. Tanabe, K., Mackay, M., Goman, M. & Scaife, J.G. Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 195, 273–287 (1987).

    Article  CAS  Google Scholar 

  14. Conway, D.J., Greenwood, B.M. & McBride, J.S. Longitudinal study of Plasmodium falciparum polymorphic antigens in a malaria endemic population. Infect. Immun. 60, 1122–1127 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferreira, M.U. et al. Stable patterns of allelic diversity at the merozoite surface protein-1 locus of Plasmodium falciparum in clinical isolates from southern Vietnam. J. Euk. Microbiol. 45, 131–136 (1998).

    Article  CAS  Google Scholar 

  16. Conway, D.J. et al. High recombination rate in natural populations of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 96, 4506–4511 (1999).

    Article  CAS  Google Scholar 

  17. Weir, B.S. & Cockerham, C.C. Estimating F statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS  Google Scholar 

  18. Su, X.-Z. & Wellems, T.E. Towards a high resolution Plasmodium falciparum linkage map: Polymorphic markers from hundreds of simple sequence repeats. Genomics 33, 430–444 (1996).

    Article  CAS  Google Scholar 

  19. Anderson, T.J.C., Su, X.-Z., Bockaire, M., Lagog, M. & Day, K.P. Twelve microsatellite markers for characterisation of Plasmodium falciparum from finger prick blood samples. Parasitology 119, 113–125 (1999).

    Article  CAS  Google Scholar 

  20. Sakihama, N. et al. Allelic recombination and linkage disequilibrium within Msp-1 of Plasmodium falciparum, the malignant human malaria parasite. Gene 230, 47–54 (1999).

    Article  CAS  Google Scholar 

  21. Locher, C.P., Tam, L.Q., Chang, S.P., McBride, J.S. & Siddiqui, W.A. Plasmodium falciparum : gp195 tripeptide repeat-specific monoclonal antibody inhibits parasite growth in vitro. Exp. Parasitol. 84, 74–83 (1996).

    Article  CAS  Google Scholar 

  22. Miller, L.H., Roberts, T., Shahabuddin, M. & McCutchan, T.F. Analysis of sequence diversity in the Plasmodium falciparum merozoite surface protein-1 (MSP-1). Mol. Biochem. Parasitol. 59, 1–14 (1993).

    Article  CAS  Google Scholar 

  23. Cavanagh, D.R. & McBride, J.S. Antigenicity of recombinant proteins derived from Plasmodium falciparum merozoite surface protein 1. Mol. Biochem. Parasitol. 85, 197–211 (1997).

    Article  CAS  Google Scholar 

  24. Cavanagh, D.R. et al. A longitudinal study of type-specific antibody responses to Plasmodium falciparum merozoite surface protein-1 in an area of unstable malaria in Sudan. J. Immunol. 161, 347–359 (1998).

    CAS  PubMed  Google Scholar 

  25. D'cAlessandro, U. et al. Efficacy trial of the malaria vaccine SPf66 in Gambian infants. Lancet 346, 462–467 (1995).

    Article  Google Scholar 

  26. Riley, E.M. et al. Naturally acquired cellular and humoral immune responses to the major merozoite surface antigen (PfMSP1) of Plasmodium falciparum are associated with reduced malaria morbidity. Parasite Immunol. 14, 321–337 (1992).

    Article  CAS  Google Scholar 

  27. Al-Yaman, F. et al. Assessment of the role of naturally acquired antibody levels to Plasmodium falciparum merozoite surface protein-1 in protecting Papua New Guinean children from malaria mortality. Am. J. Trop. Med. Hyg. 54, 443–448 (1996).

    Article  CAS  Google Scholar 

  28. Egan, A.F. et al. Clinical immunity to Plasmodium falciparum malaria is associated with serum antibodies to the 19kDa C-terminal fragment of the merozoite surface antigen, PfMSP1. J. Infect. Dis. 173, 765–769 (1996).

    Article  CAS  Google Scholar 

  29. Dodoo, D. et al. Levels of antibody to conserved parts of Plasmodium falciparum merozoite surface protein 1 in Ghanaian children are not associated with protection from clinical malaria. Infect. Immun. 67, 2131–2137 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Morgan, W.D. et al. Solution structure of an EGF module pair from the Plasmodium falciparum merozoite surface protein 1. J. Mol. Biol. 289, 113–122 (1999).

    Article  CAS  Google Scholar 

  31. Patino, J.A., Holder, A.A., McBride, J.S. & Blackman, M.J. Antibodies that inhibit malaria merozoite surface protein-1 processing and erythrocyte invasion are blocked by naturally acquired human antibodies. J. Exp. Med. 186, 1689–1699 (1997).

    Article  CAS  Google Scholar 

  32. Gupta, S. et al. The maintenance of strain structure in populations of recombining infectious agents. Nature Med. 2, 437–442 (1996).

    Article  CAS  Google Scholar 

  33. Hastings, I. Population genetics and the detection of immunogenic and drug-resistant loci in Plasmodium. Parasitol. 112, 155–164 (1996).

    Article  Google Scholar 

  34. Conway, D.J., Greenwood, B.M. & McBride, J.S. The epidemiology of multiple-clone Plasmodium falciparum infections in Gambian patients. Parasitology 103, 1–6 (1991).

    Article  Google Scholar 

  35. Kaneko, O., Kimura, M., Kawamoto, F., Ferreira, M.U. & Tanabe, K. Plasmodium falciparum: Allelic variation in the merozoite surface protein 1 gene in wild isolates from southern Vietnam. Exp. Parasitol. 86, 45–57 (1997).

    Article  CAS  Google Scholar 

  36. Burghaus, P.A. & Holder, A.A. Expression of the 19-kilodalton carboxy-terminal fragment of the Plasmodium falciparum merozoite surface protein-1 in Escherichia coli as a correctly folded protein. Mol. Biochem. Parasitol. 64, 165–169 (1994).

    Article  CAS  Google Scholar 

  37. Egan, A.F. et al. Serum antibodies from malaria-exposed people recognize conserved epitopes formed by the two epidermal growth factor motifs of MSP1(19), the carboxy-terminal fragment of the major merozoite surface protein of Plasmodium falciparum. Infect. Immun. 63, 456–466 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank O. Ogundahunsi, M. Grobusch, K. Hirayama, K. Na-Bangchang, C. Curtis, J. Trigg, J. Curtis, G. Warnasuriya, and D. Warhurst for support with sample collection and processing; H. Weiss for help with the cohort study database; T. Anderson for advice on microsatellites; and R. Gregory for technical assistance with the ABI 377. This work was supported by The Wellcome Trust (grant references 013163/Z/94/B,C and 0471191/Z/96), the UK Medical Research Council (grant reference G9803180), and The Ministry of Education, Science and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Conway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conway, D., Cavanagh, D., Tanabe, K. et al. A principal target of human immunity to malaria identified by molecular population genetic and immunological analyses. Nat Med 6, 689–692 (2000). https://doi.org/10.1038/76272

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing