Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of Fas ligand expression and cell death by apoptosis-linked gene 4

Abstract

Programmed cell death is a process required for the normal development of an organism. One of the best understood apoptotic pathways occurs in T lymphocytes and is mediated by Fas/Fas ligand (FasL) interaction. During studies of apoptosis induced by T cell-receptor engagement, we identified ALG-4F , a truncated transcript that prevents T cell-receptor-induced FasL upregulation and cell death. Overexpression of full-length ALG-4 induced transcription of FasL and, consequently, apoptosis. These results indicate that ALG-4 is necessary and sufficient for FasL expression. Fas/FasL interaction initiates cell death in many other systems, and its dysregulation is a mechanism by which several pathologic conditions arise. Understanding the molecular mechanisms of FasL regulation could be very useful in elucidating how these diseases develop and in identifying potential therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ALG-4F inhibits TCR-induced apoptosis.
Figure 2: ALG-4F blocks TCR-mediated FasL induction.
Figure 3: Overexpression of ALG-4 induces cell death.
Figure 4: ALG-4 overexpression induces FasL expression.
Figure 5: ALG-4 induces activation of the transcription factor NF-κB and FasL promoter expression.

Similar content being viewed by others

References

  1. Kerr, J.F.R., Wyllie, A.H. & Currie, A.R. Apoptosis: a basic biologic phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  Google Scholar 

  2. Kappler, J.W., Rohem, N. & Marrack, P. T cell tolerance by clonal elimination in the thymus. Cell 49, 273–280 (1987).

    Article  CAS  Google Scholar 

  3. Webb, S., Morris, C. & Sprent, J. Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity. Cell 63, 1249 –1256 (1990).

    Article  CAS  Google Scholar 

  4. Lenardo, M.J. Interleukin-2 programs mouse T lymphocytes for apoptosis. Nature 353, 858–861 ( 1991).

    Article  CAS  Google Scholar 

  5. Dhein, J., Walczack, H., Baumler, C., Debatin, K-M. & Krammer, P.H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373, 438–444 (1995).

    Article  CAS  Google Scholar 

  6. Brunner, T. et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373, 441–444 (1995).

    Article  CAS  Google Scholar 

  7. Ju, S-T. et al. Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373, 444 –448 (1995).

    Article  CAS  Google Scholar 

  8. Wong, B. & Choi, Y. Pathways leading to cell death in T cells. Curr. Opin. Immunol. 9, 358– 364 (1997).

    Article  CAS  Google Scholar 

  9. Boldin, M.P., Goncharov, T.M., Goltsev, Y.V. & Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85, 803–816 (1996).

    Article  CAS  Google Scholar 

  10. Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death inducing signaling complex. Cell 85, 817–829 ( 1996).

    Article  CAS  Google Scholar 

  11. Kischkel, F.C. et al. Cytotoxicity-dependent Apo-1(Fas/CD95)-associated proteins (CAP) form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 ( 1995).

    Article  CAS  Google Scholar 

  12. Chinnayan, A.M. et al. Molecular ordering of the cell death pathway. J. Biol. Chem. 271, 4573–4577 (1996).

    Article  Google Scholar 

  13. Enari, M., Talanian, R.V., Wong, W.W. & Nagata, S. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 380, 723– 726 (1996).

    Article  CAS  Google Scholar 

  14. Cohen, P.L. & Eisenberg, R.A. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol. 9, 243–269 (1991).

    Article  CAS  Google Scholar 

  15. Fisher, G.H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    Article  CAS  Google Scholar 

  16. Rieux-Laucat, F. et al. Mutation in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

    Article  CAS  Google Scholar 

  17. Hahne, M. et al. Melanoma cell expression of Fas (Apo1/CD95) ligand: implications for tumor immune response. Science 274, 1363–1366 (1996).

    Article  CAS  Google Scholar 

  18. Strand, S. et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells. A mechanism of immune evasion? Nature Med. 2, 1361–1366 (1996).

    Article  CAS  Google Scholar 

  19. O'Connell, J., O'Sullivan, G. C., Collins, J. K. & Shanahan, F. The Fas counterattack: Fas mediated T cell killing by colon cancer cells expressing Fas ligand. J. Exp. Med. 184, 1075– 1082 (1996).

    Article  CAS  Google Scholar 

  20. Bellgrau, D. et al. A role for CD95 ligand in preventing graft rejection. Nature 377, 630–632 ( 1995).

    Article  CAS  Google Scholar 

  21. Griffith, T.S. et al. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

    Article  CAS  Google Scholar 

  22. Kasibhatla, S. et al. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-κB and AP-1. Mol. Cell 1, 543–551 ( 1998).

    Article  CAS  Google Scholar 

  23. Caricchio, R., Reap, E. A. & Cohen, P. L. Fas/Fas ligand interactions are involved in ultraviolet-B-induced human lymphocytes apoptosis. J. Immunol. 161, 241–251 (1998).

    CAS  PubMed  Google Scholar 

  24. Bennett M. et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282, 290– 294 (1998).

    Article  CAS  Google Scholar 

  25. Herr, I. et al. Activation of CD95 (Apo1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J. 16, 6200–6208 (1997).

    Article  CAS  Google Scholar 

  26. Vito, P., Lacana', E. & D'Adamio, L. Interfering with apoptosis: Ca++-binding protein ALG-2 and Alzheimer's disease gene ALG-3. Science 271, 521–525 ( 1996).

    Article  CAS  Google Scholar 

  27. D'Adamio, L., Lacana', E. & Vito, P. Functional cloning of genes involved in T-cell receptor-induced programmed cell death. Semin. Immunol. 9, 17–23 (1997).

    Article  CAS  Google Scholar 

  28. Nagase, T. et al. Prediction of the coding sequences of unidentified human genes. V. The coding sequences of 40 new genes (KIAA0161-KIAA0200) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res. 3, 17–24 (1996).

    Article  CAS  Google Scholar 

  29. Lazebnik, Y.A., Kaufmann, S. H., Desnoyers, S., Poirier, G.G. & Earnshaw, W.C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346–349 (1994).

    Article  CAS  Google Scholar 

  30. Tewari, M. et al. Yama/CPP32β, a mammalian homolog of Ced-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81, 801–812 ( 1995).

    Article  CAS  Google Scholar 

  31. Latinis, K.M. et al. Regulation of CD95 (Fas) ligand expression by TCR mediated signaling events. J. Immunol. 158, 4602– 4611 (1997).

    CAS  PubMed  Google Scholar 

  32. Matsui, K., Fine, A., Bangmin, Z., Marshak-Rothstein, A. & Ju, S. Identification of two NF-κB binding sites in mouse CD95 ligand (Fas ligand) promoter: functional analysis in T cell hybridoma. J. Immunol. 161, 3469– 3473 (1998).

    CAS  PubMed  Google Scholar 

  33. Baeuerle, P. A. & Henkel, T. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12, 141–179 (1994).

    Article  CAS  Google Scholar 

  34. Nagata, S. & Golstein, P. The Fas death factor. Science 267, 1449–1456 ( 1995).

    Article  CAS  Google Scholar 

  35. Yang, Y., Liu, Z. H., Ware, C. F. & Ashwell, J. D. A cysteine protease inhibitor prevents activation-induced T-cell apoptosis and death of peripheral blood cells from human immunodeficiency virus-infected individuals by inhibiting upregulation of Fas ligand. Blood 89, 550–557 (1997).

    CAS  PubMed  Google Scholar 

  36. Nagata, S. Fas ligand and immune evasion. Nature Med. 2, 1306–1307 (1996).

    Article  CAS  Google Scholar 

  37. D'Adamio, F. et al. A new dexamethasone-induced gene of the leucine zipper family protects T lymphocytes from TCR/CD3-activated cell death. Immunity 7, 803–812 ( 1997).

    Article  CAS  Google Scholar 

  38. Ivanov, V.N., Lee, R.K., Podack, E.R. & Malek, T.R. Regulation of Fas-dependent activation-induced T cell apoptosis by cAMP signaling: a potential role for transcription factor NF-κB. Oncogene 14, 2455–2464 (1997).

    Article  CAS  Google Scholar 

  39. Bauer, M.K.A. et al. Role of reactive oxygen intermediates in activation-induced CD95 (APO-1/Fas) ligand expression. J. Biol. Chem. 273, 8048–8055 (1998).

    Article  CAS  Google Scholar 

  40. Mittelstadt, P. R. & Ashwell, J. D. Cyclosporin A-sensitive transcription factor Egr-3 regulates Fas ligand expression. Mol. Cell. Biol. 18, 3744–3751 (1998).

    Article  CAS  Google Scholar 

  41. Nicoletti, I. et al. A rapid and simple method for measuring thymocytes apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139, 271–279 ( 1991).

    Article  CAS  Google Scholar 

  42. Ausubel, F.M. et al. in Current Protocols in Molecular Biology (J. Wiley & Sons, New York, 1992).

    Google Scholar 

  43. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  44. Bours, V. et al. A novel mitogen-inducible gene product related to p50/p105-NF-kappa B participates in transactivation through a κB site. Mol. Cell. Biol. 12, 685–695 (1992).

    Article  CAS  Google Scholar 

  45. Hann, S.R. et al. A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt's lymphomas. Cell 52, 185– 195 (1988).

    Article  CAS  Google Scholar 

  46. Lacana' E., Ganjei, J. K., Vito, P. & D'Adamio, L. Dissociation of apoptosis and activation of IL-1β-converting enzyme/Ced-3 protease by ALG-2 and the truncated Alzheimer's gene ALG-3. J. Immunol. 158, 5129–5135 (1997).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Nagase and N. Nomura for the cDNA for human ALG-4; S.-T. Ju for the FasL reporter construct; G. Ruberti for the FasL cDNA; and M.J. Lenardo for the NF-AT and NF-κB reporter vectors. We thank F. Flomerfelt, T. Kristie and R. Schwartz for suggestions and critical reading of the manuscript, and B. Marshall for editorial assistance. E.L. is supported by a Telethon Italy fellowship grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano D'Adamio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacana', E., D'Adamio, L. Regulation of Fas ligand expression and cell death by apoptosis-linked gene 4. Nat Med 5, 542–547 (1999). https://doi.org/10.1038/8420

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8420

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing