Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression

Abstract

In situ killing of tumor cells using suicide gene transfer to generate death by a non-apoptotic pathway was associated with high immunogenicity and induction of heat shock protein (hsp) expression. In contrast, a syngeneic colorectal tumor line, CMT93, killed predominantly by apoptosis, showed low levels of hsp expression and less immunogenicity. When apoptosis was inhibited in CMT93 cells by overexpression of bcl-2, hsp was also induced. Furthermore, when cDNA encoding hsp70 was stably transfected into BT6 and CMT93 cells, its expression significantly enhanced the immunogenicity of both tumors. Increased levels of hsp, induced by non-apoptotic cell killing, may provide an immunostimulatory signal in vivo which helps break tolerance to tumor antigens. These findings have important implications for the development of novel anti-cancer therapies aimed at promoting patients' immune responses to their own tumors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Houghton, A.N. Cancer antigens: immune recognition of self and altered self. J. Exp. Med. 180, 1–4 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. Hellstrom, K.E., Hellstrom, I. & Chen, L. Can co-stimulated tumor immunity be therapeutically efficacious? Immunol. Rev. 145, 123–145 (1995).

    Article  PubMed  CAS  Google Scholar 

  3. Pardoll, D.M. Paracrine Cytokine Adjuvants in Cancer Immunotherapy Ann. Rev. Immunol. 13, 399–415 (1995).

    Article  CAS  Google Scholar 

  4. Forni, G. et al. Molecular approaches to cancer immunotherapy Cytokin. Mol. Ther. 1, 225–248 (1995).

    CAS  Google Scholar 

  5. Vile, R.G. & Chong, H. Immunotherapy: Combinatorial molecular immunotherapy - a synthesis and suggestions. Can. Metast. Rev. 15, 351–364 (1996).

    Article  CAS  Google Scholar 

  6. Cayeux, S., Richter, G., Noffz, G., Dorken, B. & Blankenstein, T. Influence of gene-modified (IL-7, IL-4 and B7) tumor cell cvaccines on tumor antigen presentation. J. Immunol. 158, 2834–2841 (1997).

    PubMed  CAS  Google Scholar 

  7. Cavallo, F. et al. Protective and curative potential of vaccination with interleukin-2-gene transfected cells from a spontaneous mouse mammary adenocarcinoma. Cancer Res. 51, 5067–5070 (1993).

    Google Scholar 

  8. Freeman, S.M., Ramesh, R. & Marrogi, A.J. Immune system in suicide gene therapy. Lancet 349, 2–3 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. Huang, A.Y.C., Bruce, A.T., Pardoll, D.M. & Levitsky, H.I. In vivo cross-priming of MHC Class l-restricted antigens requires a TAP transporter. Immunity 4, 349–355 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte macrophage colony stimulating factor stimulates potent, specific, and long lasting anti-tumor immunity. Proc. Not. Acad. Sci. USA 90, 3539–354. (1993).

    Article  CAS  Google Scholar 

  11. Suto, R. & Srivastava, P.K. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269, 1585–1588 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. Tamura, Y., Peng, P., Liu, K., Daou, M. & Srivastava, P.K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278, 117–120 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. Barba, D., Hardin, J., Sadelain, M. & Gage, F.H. Development of anti tumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc. Nat. Acad. Sci. USA 91, 4348–4352 (1994).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Caruso, M. et al. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc. Nat. Acad. Sci. USA 90, 7024–7028 (1993).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Vile, R.G., Nelson, J.A., Castleden, S., Chong, H. & Hart, I.R. Systemic gene therapy of murine melanoma using tissue specific expression of the HSVtk gene involves an immune component. Cancer Research 54, 6228–6234 (1994).

    PubMed  CAS  Google Scholar 

  16. Vile, R.G. et al. Generation of an anti-tumor immune response in a non-immunogenic tumor: HSVtk-killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoral cytokine expression. Intl. J. Cancer 71, 267–274 (1997).

    Article  CAS  Google Scholar 

  17. Castleden, S.A. et al. A family of bicistronic vectors to enhance both local and systemic anti tumor effects of HSVtk or cytokine expression in a murine melanoma model. Hum. Cene Ther. 8, 2087–2102 (1997).

    Article  CAS  Google Scholar 

  18. Consalvo, M. et al. 5-fluorocytosine-induced eradication of murine adenocarcinomas engineered to express the cytosine deaminase suicide gene requires host immune competence and leaves an efficient memory. J. Immun. 154, 5302–5312 (1995).

    PubMed  CAS  Google Scholar 

  19. Mullen, C.A., Coale, M.M., Lowe, R. & Blaese, R.M. Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Can. Res. 54, 1503–1506 (1994).

    CAS  Google Scholar 

  20. Colombo, M.P., Modesti, A., Parmiani, G. & Forni, G. Local cytokine availability elicits tumor rejection and systemic immunity through granulocyte-T-lymphocyte cross-talk. Can. Res. 52, 4853–485 (1992).

    CAS  Google Scholar 

  21. Huang, A.Y.C. et al. Role of bone marrow derived cells in presenting MHC Class I-restricted tumor antigens. Science 264, 961–965 (1994).

    PubMed  CAS  Google Scholar 

  22. Maass, G. et al. Priming of tumor specific T cells in the draining lymph nodes after immunization with interleukin 2-secreting tumor cells: Three consecutive stages may be required for successful tumor vaccination. Proc. Nat. Acad. Sci. USA 92, 5540–5544 (1995).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Fuchs, E.J. & Matzinger, P. Is cancer dangerous to the immune system? Sem. Immunol. 8, 271–280 (1996).

    Article  CAS  Google Scholar 

  24. Matzinger, P. Tolerance, danger and the extended family. Annual Review of Immunol. 12, 991–1045 (1994).

    Article  CAS  Google Scholar 

  25. Speiser, D.E. et al. Self antigens expressed by solid tumors do not efficiently stimulate naive or activated T cells: Implications for immunotherapy. J. Exp. Med. 186, 645–653 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Castleden, S.A. Combination gene therapies for the immunotherapy of cancer. PhD Thesis, University of London. (1997).

  27. Vile, R.G., & Hart, I.R. Use of tissue-specific expression of the Herpes Simplex Virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Can. Res. 53, 3860–3864 (1993).

    CAS  Google Scholar 

  28. Wyllie, A.H. Apoptosis (The 1992 Frank Rose Memorial Lecture) B. J. Can. 67, 205–208 (1993).

    Article  CAS  Google Scholar 

  29. Columbano, A. Cell death: current difficulties in discriminating apoptosis from necrosis in the context of pathological processes in vivo. J. Cell. Biochem. 58, 181–190 (1995).

    Article  PubMed  CAS  Google Scholar 

  30. Plettenberg, A. et al. Human melanocytes and melanoma cells constitutively express the Bcl-22 protooncogene in situ and in cell culture. Am. J. Path. 146, 651–659 (1995).

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Jacobson, M.D. Apoptosis: Bcl-2-related proteins get connected. Cur. Biol. 7, R277–R281 (1997).

  32. Arends, M.J., Morris, R.G. & Wyllie, A.H. Apotosis. The role of endonuclease. Am. J. Pathol. 136, 593–608 (1990).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Hunt, C. & Calderwood, S. Characterisation and sequence of a mouse hsp70 gene and its expression in mouse cell lines. Gene 87, 199–204 (1990).

    Article  PubMed  CAS  Google Scholar 

  34. Perry, M.D., Aujame, L., Shtang, S. & Moran, L. Structure and expression of an in-ducible HSP70-encoding gene from Mus musculus. Gene 146, 273–278 (1994).

    Article  PubMed  CAS  Google Scholar 

  35. Freeman, S.M. et al. The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Can. Res. 53, 5274–5283 (1993).

    CAS  Google Scholar 

  36. Kaneko, Y. & Tsukamoto, A. Gene therapy of hepatoma: bystander effects and non-apoptotic cell death induced by thymidine kinase and ganciclovir Can. Let. 96, 105–110 (1995).

    Article  CAS  Google Scholar 

  37. Udono, H., Levey, D.L. & Srivastava, P.K. Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc. Nat. Acad. Sci. USA 91, 3077–3081 (1994).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Li, Z. Priming of T cells by heat shock protein-peptide complexes as the basis of tumor vaccines. Sem. Immunol. 9, 315–322 (1997).

    Article  CAS  Google Scholar 

  39. Wei, Y.-q. et al. Induction of autologous tumor killing by heat treatment of fresh human tumor cells: Involvement of γδ T cells and heat shock protein 70. Can. Res. 56, 1104–1110 (1996).

    CAS  Google Scholar 

  40. Multhoff, G. et al. Heat shock protein 72 on tumor cells: A recognition structure for Natural Killer cells. J. Immunol. 158, 4341–4350 (1997).

    PubMed  CAS  Google Scholar 

  41. Lukacs, K.V., Lowrie, D.B., Stokes, R.W. & Colston, M.J. Tumor cells transfected with a bacterial heat-shock gene lose tumorigenicity and induce protection against tumors. J. Exp. Med. 178, 343–3 (1993).

    Article  PubMed  CAS  Google Scholar 

  42. Lukacs, K.V., Nakakes, A., Atkins, C.J., Lowrie, D.B. & Colston, M.J. In vivo gene therapy of malignant tumors with heat shock protein-65 gene. Gene Ther. 4, 346–350 (1997).

    Article  PubMed  CAS  Google Scholar 

  43. Fisher, D.E. Apoptosis in Cancer Therapy: Crossing the Threshold Cell 78, 539–542 (1994).

    Article  PubMed  CAS  Google Scholar 

  44. Altman, D.G. Analysis of survival times. In: Practical Statistics for Medical Research 365–395 (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melcher, A., Todryk, S., Hardwick, N. et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med 4, 581–587 (1998). https://doi.org/10.1038/nm0598-581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0598-581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing