Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Historical Perspective
  • Published:

A decade of discoveries in cardiac biology

Abstract

The heart is the first organ to form in the embryo, and all subsequent events in the life of the organism depend on its function. Inherited mutations in cardiac regulatory genes give rise to congenital heart disease, the most common form of human birth defects, and abnormalities of the adult heart represent the most prevalent cause of morbidity and mortality in the industrialized world. The past decade has marked a transition from physiological and functional studies of the heart toward a deeper understanding of cardiac function (and dysfunction) at genetic and molecular levels. These discoveries have provided new therapeutic approaches for prevention and palliation of cardiac disease and have raised new questions, challenges and opportunities for the future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heart development.
Figure 2: Hypertrophic signaling pathways that influence the growth of the adult heart.
Figure 3: Calcium signaling during cardiac contraction.

Similar content being viewed by others

References

  1. American Heart Association. Heart Disease and Stroke Statistics: 2004 Update (American Heart Association, Dallas, Texas, USA, 2003).

  2. Hoffman, J.I. Incidence of congenital heart disease: II. Prenatal incidence. Pediatr. Cardiol. 16, 155–165 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Schneider, V.A. & Mercola, M. Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev. 15, 304–315 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schultheiss, T.M., Burch, J.B. & Lassar, A.B. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev. 11, 451–462 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Pandur, P., Lasche, M., Eisenberg, L.M. & Kuhl, M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418, 636–641 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Marvin, M.J., Di Rocco, G., Gardiner, A., Bush, S.M. & Lassar, A.B. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev. 15, 316–327 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bodmer, R. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118, 719–729 (1993).

    CAS  PubMed  Google Scholar 

  8. Azpiazu, N. & Frasch, M. tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev. 7, 1325–1340 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Lints, T.J., Parsons, L.M., Hartley, L., Lyons, I. & Harvey, R.P. Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119, 419–431 (1993).

    CAS  PubMed  Google Scholar 

  10. Komuro, I. & Izumo, S. Csx: a murine homeobox-containing gene specifically expressed in the developing heart. Proc. Natl. Acad. Sci. USA 90, 8145–8149 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lyons, I. et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 9, 1654–1666 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. McKinsey, T.A., Zhang, C.L. & Olson, E.N. MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem. Sci. 27, 40–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Morin, S., Charron, F., Robitaille, L. & Nemer, M. GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J. 19, 2046–2055 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Belaguli, N.S. et al. Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators. Mol. Cell. Biol. 20, 7550–7558 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, D. et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 105, 851–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Bao, Z.Z., Bruneau, B.G., Seidman, J.G., Seidman, C.E. & Cepko, C.L. Regulation of chamber-specific gene expression in the developing heart by Irx4. Science 283, 1161–1164 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Kelly, R.G., Zammit, P.S. & Buckingham, M.E. Cardiosensor mice and transcriptional subdomains of the vertebrate heart. Trends Cardiovasc. Med. 9, 3–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Kelly, R.G. & Buckingham, M.E. The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet. 18, 210–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Kramer, K.L. & Yost, H.J. Cardiac left-right development: are the early steps conserved? Cold Spring Harb. Symp. Quant. Biol. 67, 37–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Srivastava, D., Cserjesi, P. & Olson, E.N. A subclass of bHLH proteins required for cardiac morphogenesis. Science 270, 1995–1999 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Yamagishi, H. et al. The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation. Dev. Biol. 239, 190–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Cai, C.L. et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5, 877–889 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fishman, M.C. & Olson, E.N. Parsing the heart: genetic modules for organ assembly. Cell 91, 153–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Garratt, A.N., Ozcelik, C. & Birchmeier, C. ErbB2 pathways in heart and neural diseases. Trends Cardiovasc. Med. 13, 80–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Chien, K.R. Myocyte survival pathways and cardiomyopathy: implications for trastuzumab cardiotoxicity. Semin. Oncol. 27, 9–14; discussion 92–100 (2000).

    CAS  PubMed  Google Scholar 

  26. Stuckmann, I., Evans, S. & Lassar, A.B. Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Dev. Biol. 255, 334–349 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Gitler, A.D., Lu, M.M., Jiang, Y.Q., Epstein, J.A. & Gruber, P.J. Molecular markers of cardiac endocardial cushion development. Dev. Dyn. 228, 643–650 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Gaussin, V. et al. Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc. Natl. Acad. Sci. USA 99, 2878–2883 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, R.Y., Robertson, E.J. & Solloway, M.J. Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev. Biol. 235, 449–466 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Farrell, M., Waldo, K., Li, Y.X. & Kirby, M.L. A novel role for cardiac neural crest in heart development. Trends Cardiovasc. Med. 9, 214–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Epstein, J.A. & Buck, C.A. Transcriptional regulation of cardiac development: implications for congenital heart disease and DiGeorge syndrome. Pediatr. Res. 48, 717–724 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Gourdie, R.G., Wei, Y., Kim, D., Klatt, S.C. & Mikawa, T. Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers. Proc. Natl. Acad. Sci. USA 95, 6815–6818 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rentschler, S. et al. Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc. Natl. Acad. Sci. USA 99, 10464–10469 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rentschler, S. et al. Visualization and functional characterization of the developing murine cardiac conduction system. Development 128, 1785–1792 (2001).

    CAS  PubMed  Google Scholar 

  35. Srivastava, D. & Olson, E.N. A genetic blueprint for cardiac development. Nature 407, 221–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Schott, J.J. et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281, 108–111 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Basson, C.T. et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat. Genet. 15, 30–35 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Garg, V. et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424, 443–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Olson, E.N. & Schneider, M.D. Sizing up the heart: development redux in disease. Genes Dev. 17, 1937–1956 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Lowes, B.D. et al. Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N. Engl. J. Med. 346, 1357–1365 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Antos, C.L. et al. Activated glycogen synthase-3β suppresses cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. USA 99, 907–912 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rothermel, B.A. et al. Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. USA 98, 3328–3333 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koch, W.J. et al. Cardiac function in mice overexpressing the β-adrenergic receptor kinase or a β-ARK inhibitor. Science 268, 1350–1353 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. MacLellan, W.R. & Schneider, M.D. Death by design. Programmed cell death in cardiovascular biology and disease. Circ. Res. 81, 137–144 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Chien, K.R. Genomic circuits and the integrative biology of cardiac diseases. Nature 407, 227–232 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Hirota, H. et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97, 189–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Dorn, G.W., II & Brown, J.H. Gq signaling in cardiac adaptation and maladaptation. Trends Cardiovasc. Med. 9, 26–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Molkentin, J.D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Frey, N., McKinsey, T.A. & Olson, E.N. Decoding calcium signals involved in cardiac growth and function. Nat. Med. 6, 1221–1227 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Sugden, P.H. Signalling pathways in cardiac myocyte hypertrophy. Ann. Med. 33, 611–622 (2001).

    CAS  PubMed  Google Scholar 

  51. Molkentin, J.D. & Dorn, I.G., II. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63, 391–426 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Sano, M. et al. Activation and function of cyclin T–Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy. Nat. Med. 8, 1310–1317 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, C.L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McFarlane, S.I., Winer, N. & Sowers, J.R. Role of the natriuretic peptide system in cardiorenal protection. Arch. Intern. Med. 163, 2696–2704 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Konstam, M.A. Improving clinical outcomes with drug treatment in heart failure: what have trials taught? Am. J. Cardiol. 91, 9D–14D (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Rockman, H.A., Koch, W.J. & Lefkowitz, R.J. Seven-transmembrane-spanning receptors and heart function. Nature 415, 206–212 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Packer, M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J. Am. Coll. Cardiol. 20, 248–254 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Dorn, G.W., II. Adrenergic pathways and left ventricular remodeling. J. Card. Fail. 8, S370–S373 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Bristow, M. Antiadrenergic therapy of chronic heart failure: surprises and new opportunities. Circulation 107, 1100–1102 (2003).

    Article  PubMed  Google Scholar 

  60. Bers, D.M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Schmidt, A.G., Edes, I. & Kranias, E.G. Phospholamban: a promising therapeutic target in heart failure? Cardiovasc. Drugs Ther. 15, 387–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Marx, S.O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Wehrens, X.H. et al. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113, 829–840 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Minamisawa, S. et al. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99, 313–322 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Miyamoto, M.I. et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc. Natl. Acad. Sci. USA 97, 793–798 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Song, Q. et al. Rescue of cardiomyocyte dysfunction by phospholamban ablation does not prevent ventricular failure in genetic hypertrophy. J. Clin. Invest. 111, 859–867 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Haghighi, K. et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J. Clin. Invest. 111, 869–876 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schmitt, J.P. et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299, 1410–1413 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Bolli, R. & Marban, E. Molecular and cellular mechanisms of myocardial stunning. Physiol. Rev. 79, 609–634 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Hoshijima, M., Pashmforoush, M., Knoll, R. & Chien, K.R. The MLP family of cytoskeletal Z disc proteins and dilated cardiomyopathy: a stress pathway model for heart failure progression. Cold Spring Harb. Symp. Quant. Biol. 67, 399–408 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Seidman, J.G. & Seidman, C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104, 557–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Maass, A., Konhilas, J.P., Stauffer, B.L. & Leinwand, L.A. From sarcomeric mutations to heart disease: understanding familial hypertrophic cardiomyopathy. Cold Spring Harb. Symp. Quant. Biol. 67, 409–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Maron, B.J. Hypertrophic cardiomyopathy. Lancet 350, 127–133 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Dalloz, F., Osinska, H. & Robbins, J. Manipulating the contractile apparatus: genetically defined animal models of cardiovascular disease. J. Mol. Cell. Cardio. 33, 9–25 (2001).

    Article  CAS  Google Scholar 

  75. Olson, T.M., Michels, V.V., Thibodeau, S.N., Tai, Y.S. & Keating, M.T. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280, 750–752 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Towbin, J.A. & Bowles, N.E. The failing heart. Nature 415, 227–233 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Li, D. et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 100, 461–464 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Fatkin, D. et al. An abnormal Ca2+ response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. J. Clin. Invest. 106, 1351–1359 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Leinwand, L.A. Sex is a potent modifier of the cardiovascular system. J. Clin. Invest. 112, 302–307 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Keating, M.T. & Sanguinetti, M.C. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104, 569–580 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Marban, E. Cardiac channelopathies. Nature 415, 213–218 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, Q. et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80, 805–811 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Sanguinetti, M.C., Jiang, C., Curran, M.E. & Keating, M.T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81, 299–307 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Splawski, I., Tristani-Firouzi, M., Lehmann, M.H., Sanguinetti, M.C. & Keating, M.T. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat. Genet. 17, 338–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Kirchhoff, S. et al. Abnormal cardiac conduction and morphogenesis in connexin40 and connexin43 double-deficient mice. Circ. Res. 87, 399–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Kasahara, H. et al. Progressive atrioventricular conduction defects and heart failure in mice expressing a mutant Csx/Nkx2.5 homeoprotein. J. Clin. Invest. 108, 189–201 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bruneau, B.G. et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106, 709–721 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Nguyen-Tran, V.T. et al. A novel genetic pathway for sudden cardiac death via defects in the transition between ventricular and conduction system cell lineages. Cell 102, 671–682 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Orlic, D. et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA 98, 10344–10349 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lanza, R. et al. Regeneration of the infected heart with stem cell derived by nuclear transplantation. Circ. Res. 94, 820–827 (2004)

    Article  CAS  PubMed  Google Scholar 

  91. Murry, C.E., Whitney, M.L., Laflamme, M.A., Reinecke, H. & Field, L.J. Cellular therapies for myocardial infarct repair. Cold Spring Harb. Symp. Quant. Biol. 67, 519–526 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Pasumarthi, K.B. & Field, L.J. Cardiomyocyte cell cycle regulation. Circ. Res. 90, 1044–1054 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Murry, C.E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Balsam, L.B. et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668–675 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Chien, K.R. Stem cells: lost in translation. Nature 428, 607–608 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Nygren, J.M. et al. Bone marrow–derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10, 494–501 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Assmus, B. et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106, 3009–3017 (2002).

    Article  PubMed  Google Scholar 

  98. Reinecke, H., Poppa, V. & Murry, C.E. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J. Mol. Cell. Cardiol. 34, 241–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Beltrami, A.P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Oh, H. et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. USA 100, 12313–12318 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu, X., Ding, S., Ding, Q., Gray, N.S. & Schultz, P.G. Small molecules that induce cardiomyogenesis in embryonic stem cells. J. Am. Chem. Soc. 126, 1590–1591 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Poss, K.D., Wilson, L.G. & Keating, M.T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Leferovich, J.M. et al. Heart regeneration in adult MRL mice. Proc. Natl. Acad. Sci. USA 98, 9830–9835 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bush, E. et al. A small molecular activator of cardiac hypertrophy uncovered in a chemical screen for modifiers of the calcineurin signaling pathway. Proc. Natl. Acad. Sci. USA 101, 2870–2875 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to past and present members of my lab for insightful comments and scientific contributions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, E. A decade of discoveries in cardiac biology. Nat Med 10, 467–474 (2004). https://doi.org/10.1038/nm0504-467

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0504-467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing