Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calcium-pump inhibitors induce functional surface expression of ΔF508-CFTR protein in cystic fibrosis epithelial cells

Abstract

The most common mutation in cystic fibrosis, ΔF508, results in a cystic fibrosis transmembrane conductance regulator (CFTR) protein that is retained in the endoplasmic reticulum (ER). Retention is dependent upon chaperone proteins, many of which require Ca++ for optimal activity. Interfering with chaperone activity by depleting ER Ca++ stores might allow functional ΔF508-CFTR to reach the cell surface. We exposed several cystic fibrosis cell lines to the ER Ca++ pump inhibitor thapsigargin and evaluated surface expression of ΔF508-CFTR. Treatment released ER-retained ΔF508-CFTR to the plasma membrane, where it functioned effectively as a Cl channel. Treatment with aerosolized calcium-pump inhibitors reversed the nasal epithelial potential defect observed in a mouse model of ΔF508-CFTR expression. Thus, ER calcium-pump inhibitors represent a potential target for correcting the cystic fibrosis defect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CFTR chloride channel activity in CF-affected epithelial cells in control conditions or after treatment with thapsigargin.
Figure 2: Effects of thapsigargin treatment on plasma membrane and transepithelial Cl permeability.
Figure 3: Immunolocalization of ΔF508-CFTR in untreated and thapsigargin-treated CF epithelial cells.
Figure 4: Chaperone expression and distribution in thapsigargin-treated cells.
Figure 5: NPD measurements in thapsigargin-treated and untreated ΔF508 mutant mice.

Similar content being viewed by others

References

  1. Davis, P.B., Drumm, M. & Konstan, M.W. Cystic fibrosis. Am. J. Respir. Crit. Care Med. 154, 1229–1256 (1996).

    Article  CAS  Google Scholar 

  2. Sheppard, D.N. & Welsh, M.J. Structure and function of the CFTR chloride channel. Physiol. Rev. 79, Suppl. S23–S45 (1999).

    Article  CAS  Google Scholar 

  3. Thomas, P.J., Shenbagamurthi, P., Sondek, J., Hullihen, J.M. & Pedersen, P.L. The cystic fibrosis transmembrane conductance regulator: Effects of the most common cystic fibrosis-causing mutation on the secondary structure and the stability of a synthetic peptide. J. Biol. Chem. 267, 5727–5730 (1992).

    CAS  PubMed  Google Scholar 

  4. Cheng, S.H. et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834 (1990).

    Article  CAS  Google Scholar 

  5. Ward, C.L., Omura, S. & Kopito, R.R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 122–127 (1995).

    Article  Google Scholar 

  6. Egan, M.E., Schwiebert, E.M. & Guggino, W.B. Differential expression of outwardly rectifying chloride channels and CFTR induced by low temperature in CF airway epithelial cells. Am. J. Physiol. 268, C243–C251 (1995).

    Article  CAS  Google Scholar 

  7. Rubenstein, R.C., Egan, M.E. & Zeitlin, P.L. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing ΔF508-CFTR. J. Clin. Invest. 100, 2457–2465 (1997).

    Article  CAS  Google Scholar 

  8. Hwang, T.C., Wang, F., Yang, I.C. & Reenstra, W.W. Genistein potentiates wild-type and ΔF508-CFTR channel activity. Am. J. Physiol. 273, C988–C998 (1997).

    Article  CAS  Google Scholar 

  9. Dalemans, W. et al. Altered chloride ion channel kinetics associated with the ΔF508 cystic fibrosis mutation. Nature 354, 526–528 (1991).

    Article  CAS  Google Scholar 

  10. Maitra, R., Shaw, C.M., Stanton, B.A. & Hamilton, J.W. Increased functional cell surface expression of CFTR and ΔF508-CFTR by the anthracycline doxorubicin. Am. J. Physiol. 280, C1031C1037 (2001).

  11. Nigam, S.K. et al. A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca(2+)-binding proteins and members of the thioredoxin superfamily. J. Biol. Chem. 269, 1744–1749 (1994).

    CAS  PubMed  Google Scholar 

  12. Ellgaard, L., Molinari, M. & Helenius, A. Setting the standards: Quality control in the secretory pathway. Science 286, 1882–1888 (1999).

    Article  CAS  Google Scholar 

  13. Montero, M. et al. Ca homeostasis in the endoplasmic reticulum: Coexistence of high and low [Ca] subcompartments in intact HeLa cells. J. Cell Biol. 139, 601–611 (1997).

    Article  CAS  Google Scholar 

  14. Zeitlin, P.L. et al. A cystic fibrosis bronchial epithelial cell line: Immortalization by adeno-12-SV40 infection. Am. J. Resp. Cell. Mol. Biol. 4, 313–319 (1991).

    Article  CAS  Google Scholar 

  15. Kunzelman, K. et al. An immortalized cystic fibrosis tracheal epithelial cell line homozygous for the DF508-CFTR mutation. Am. J. Resp. Cell. Mol. Biol. 8, 522–529 (1993).

    Article  Google Scholar 

  16. Haws, C.M. et al. ΔF508-CFTR channels: Kinetics, activation by forskolin, and potentiation by xanthines. Am. J. Physiol. 270, C1544–C1555 (1996).

    Article  CAS  Google Scholar 

  17. Schultz, B.D. et al. Glibenclamide blockade of CFTR chloride channels. Am. J. Physiol. 271, L192–L200 (1996).

    CAS  PubMed  Google Scholar 

  18. Verkman, A.S. Development and biological applications of chloride-sensitive fluorescent indicators. Am. J. Physiol. 259, C375–C388 (1990).

    Article  CAS  Google Scholar 

  19. Zhang, Z.R., Zeltwanger, S. & McCarty, N.A. Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes. J. Membr. Biol. 175, 35–52 (2000).

    Article  CAS  Google Scholar 

  20. Schoumacher, R.A. et al. A cystic fibrosis pancreatic adenocarcinoma cell line. Proc. Natl. Acad. Sci. USA 87, 4012–4016 (1990).

    Article  CAS  Google Scholar 

  21. Grubb, B., Lazarowski, E., Knowles, M. & Boucher, R.C. Isobutylmethylxanthine fails to stimulate chloride secretion in cystic fibrosis airway epithelia. Am. J. Resp. Cell. Mol. Biol. 8, 454–460 (1993).

    Article  CAS  Google Scholar 

  22. Choudhury, P., Liu, Y., Bick, R.J. & Sifers, R.N. Intracellular association between UDP-glucose:glycoprotein glucosyltransferase and an incompletely folded variant of α1-antitrypsin. J. Biol. Chem. 272, 13446–13451 (1997).

    Article  CAS  Google Scholar 

  23. Shachar, I., Rabinovich, E., Kerem, A. & Bar-Nun, S. Thiol-reducing agents and calcium perturbants alter intracellular sorting of immunoglobulin M. J. Biol. Chem. 269, 27344–27350 (1994).

    CAS  PubMed  Google Scholar 

  24. Tsien, R.Y. New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis and properties of prototype structures. Biochem. J. 19, 2396–2404 (1980).

    Article  CAS  Google Scholar 

  25. Mason, M.J., Garcia-Rodriguez, C. & Grinstein, S. Coupling between intracellular Ca2+ stores and the Ca2+ permeability of the plasma membrane. Comparison of the effects of thapsigargin, 2, 5-di-(tert-butyl)-1, 4-hydroquinone, and cyclopiazonic acid in rat thymic lymphocytes. J. Biol. Chem. 266, 20856–20862 (1991).

    CAS  PubMed  Google Scholar 

  26. Booth, C. & Koch, G.L.E. Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell 59, 729–737 (1989).

    Article  CAS  Google Scholar 

  27. Lee, A.S. The glucose-regulated proteins: Stress induction and clinical applications. TIBS 26, 504–10 (2001).

    CAS  PubMed  Google Scholar 

  28. Llewellyn, D.H., Kendall, J.M., Sheikh, F.N. & Campbell, A.K. Induction of calreticulin expression in HeLa cells by depletion of the endoplasmic reticulum Ca++ store and inhibition of N-linked glycosylation. Biochem. J. 318, 555–560 (1996).

    Article  CAS  Google Scholar 

  29. Zeiher, B.G. et al. A mouse model for the ΔF508 allele of cystic fibrosis. J. Clin. Invest. 96, 2051–2064 (1995).

    Article  CAS  Google Scholar 

  30. Grubb, B.R., Vick, R.N. & Boucher, R.C. Hyperabsorption of Na+ and raised Ca(2+)-mediated Cl secretion in nasal epithelia of CF mice. Am. J. Physiol. 266, C1478–C1483 (1994).

    Article  CAS  Google Scholar 

  31. Zeitlin, P.L. Novel pharmacologic therapies for cystic fibrosis. J. Clin. Invest. 103, 447–452 (1999).

    Article  CAS  Google Scholar 

  32. Rosenfeld, M.A. & Collins, F.S. Gene therapy for cystic fibrosis. Chest. 109, 241–52 (1996).

    Article  CAS  Google Scholar 

  33. Sato, S., Ward, C.L., Krouse, M.E., Wine, J.J. & Kopito, R.R. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J. Biol. Chem. 271, 635–638 (1996).

    Article  CAS  Google Scholar 

  34. Brown, C.R., Hong-Brown, L.Q. & Welch, W.J. Correcting temperature-sensitive protein folding defects. J. Clin. Invest. 99, 1432–1444 (1997).

    Article  CAS  Google Scholar 

  35. Pind, S., Riordan, J.R. & Williams, D.B. Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269, 12784–12788 (1994).

    CAS  PubMed  Google Scholar 

  36. Meacham, G.C. et al. The Hdj-2/HSC70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J. 18, 1492–1505 (1999).

    Article  CAS  Google Scholar 

  37. Lodish, H.F. & Kong, N. Perturbation of cellular calcium blocks exit of secretory proteins from the rough endoplasmic reticulum. J. Biol. Chem. 265, 10893–10899 (1990).

    CAS  PubMed  Google Scholar 

  38. Wong, W.L., Brostrom, M.A., Kuznetsov, G., Gmitter-Yellen, D. & Brostrom, C.O. Inhibition of protein synthesis and early protein processing by thapsigargin in cultured cells. Biochem. J. 289, 71–79 (1993).

    Article  CAS  Google Scholar 

  39. Hofer, A.M. & Machen, T.E. Technique for in situ measurement of calcium in intracellular inositol 1,4,5-triphosphate-sensitive stores using the fluorescent indicator mag-fura-2. Proc. Nat. Acad. Sci. USA 90, 2598–2602 (1993).

    Article  CAS  Google Scholar 

  40. Christensen, S.B., Andersen, A., Poulsen, J.C.J. & Treiman, M. Derivatives of thapsigargin as probes of its binding site on endoplasmic reticulum Ca-ATPase: Stereoselectivity and important functional groups. FEBS Lett. 335, 345–348 (1993).

    Article  CAS  Google Scholar 

  41. Tsien, R.Y., Pozzan, T. & Rink, T.J. Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J. Cell Biol. 94, 325–334 (1982).

    Article  CAS  Google Scholar 

  42. Chao, A., Kouyama, K., Heist, E., Dong, Y. & Gardner, P. Calcium- and CaMKII-dependent chloride secretion induced by the microsomal Ca-ATPase inhibitor 2,5-di-(tert-butyl)-1,4-hydroquinone in cystic fibrosis pancreatic epithelial cells. J. Clin. Invest. 96, 1794–1801 (1995).

    Article  CAS  Google Scholar 

  43. Crawford, I. et al. Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc. Nat. Acad. Sci. USA 88, 9262–9266 (1991).

    Article  CAS  Google Scholar 

  44. Gottardi, C.J. & Caplan, M.J. An ion transporting ATPase encodes multiple apical localization signals. J. Cell Biol. 121, 283–293 (1993).

    Article  CAS  Google Scholar 

  45. Biemesderfer, D., Dekan, G., Aronson, P.S. & Farquhar, M.G. Assembly of distinctive coated pit and microvillar microdomains in the renal brush border. Am. J. Physiol. 262, F55–F67 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Drumm for ΔF508-CFTR mice; W. Guggino, M. Blaustein, P. Aronson, J. Burger, G. Fyfe, G. Giebisch, G. Haddad, P. De Camilli, K. Bottomly, R. Lifton and members of the Caplan lab group for suggestions and readings of the manuscript; S.A. Mentone for help with electron microscopy; V. Rajendran and M.W. Nason for technical support; and M. Kashgarian for assistance in evaluating histopathologic specimens. This work was supported by the Alyward Family/Pitney Bowes Gift Fund, Panacea Pharmaceuticals (M.E.E. and M.J.C.) and by NIH grants DK53428 (to M.E.E.), DK50230 (to J.G.), HD32573 (to J.G.), GM42136 (to M.J.C.) and DK17433 (to J.G. and M.J.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Caplan.

Ethics declarations

Competing interests

These studies were supported to a small extent by a sponsored research agreement between Yale University and Panacea Pharmaceuticals, a small biotech firm that has licensed this technology from Yale University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egan, M., Glöckner-Pagel, J., Ambrose, C. et al. Calcium-pump inhibitors induce functional surface expression of ΔF508-CFTR protein in cystic fibrosis epithelial cells. Nat Med 8, 485–492 (2002). https://doi.org/10.1038/nm0502-485

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0502-485

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing