Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

CREB family transcription factors inhibit neuronal suicide

Neurodenerative disorders such as Huntington disease lead to neuronal cell death in discrete regions of brain. A new study implicates the CREB transcription factor family as critical mediators that prevent such neuronal death.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Under normal conditions, CREB family transcription factors promote expression of genes that contribute to neuronal survival.

References

  1. Mantamadiotis, T. et al. Disruption of CREB function in brain leads to neurodegeneration. Nature Genet. 31, 47–54 (2002).

    Article  CAS  Google Scholar 

  2. Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature Rev. Mol. Cell. Biol. 2, 599–609 (2001).

    Article  CAS  Google Scholar 

  3. Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362 (1999).

    Article  CAS  Google Scholar 

  4. Riccio, A., Ahn, S., Davenport, C.M., Blendy, J.A. & Ginty, D.D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–2361 (1999).

    Article  CAS  Google Scholar 

  5. Lonze, B.E., Riccio, A., Cohen, S. & Ginty, D.D. Apoptosis, axonal growth defects and degeneration of peripheral neurons in mice lacking CREB. Neuron (in the press).

  6. McCampbell, A. et al. CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9, 2197–2202 (2000).

    Article  CAS  Google Scholar 

  7. Steffan, J.S. et al. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 97, 6763–6768 (2000).

    Article  CAS  Google Scholar 

  8. Steffan, J.S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739–743 (2001).

    Article  CAS  Google Scholar 

  9. Nucifora, F.C., et al. Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291, 2423–2428 (2001).

    Article  CAS  Google Scholar 

  10. Shimohata, T. et al. Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nature Genet. 26, 29–36 (2000).

    Article  CAS  Google Scholar 

  11. McCampbell, A. et al. Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc. Natl. Acad. Sci. USA 98, 15179–15184 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawson, T., Ginty, D. CREB family transcription factors inhibit neuronal suicide. Nat Med 8, 450–451 (2002). https://doi.org/10.1038/nm0502-450

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0502-450

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing