Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces helicobacter-induced gastric atrophy

Abstract

Helicobacter pylori is causally associated with gastritis and gastric cancer. Some developing countries with a high prevalence of infection have high gastric cancer rates, whereas in others, these rates are low. The progression of helicobacter-induced gastritis and gastric atrophy mediated by type 1 T-helper cells may be modulated by concurrent parasitic infection. Here, in mice with concurrent helminth infection, helicobacter-associated gastric atrophy was reduced considerably despite chronic inflammation and high helicobacter colonization. This correlated with a substantial reduction in mRNA for cytokines and chemokines associated with a gastric inflammatory response of type 1 T-helper cells. Thus, concurrent enteric helminth infection can attenuate gastric atrophy, a premalignant lesion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of concurrent enteric H. polygyrus infection on H. felis-associated gastritis in mice.
Figure 2: Effect of H. polygyrus co-infection on the histopathologic gastric changes induced by infection with H. felis.
Figure 3: Helminth infection alters H. felis-specific IgG1 and IgG2a.
Figure 4: Subsequent helicobacter infection does not alter the helminth-induced Th2 response.
Figure 5: Inflammatory cytokines and chemokines are decreased in co-infected mice.

Similar content being viewed by others

References

  1. Graham, D.Y. Helicobacter pylori infection in the pathogenesis of duodenal ulcer and gastric cancer: a model. Gastroenterology 113, 1983–1991 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, J.-Q., Sridhar, S., Chen, Y. & Hunt, R.J. Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology 114, 1169– 1179 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Ally, R., Mitchell, H.M. & Segal, I. cagA positive H. pylori aplenty in South Africa: the first systematic study of H. pylori infection in asymptomatic children in Soweto. Gut 45, A97– 98 (1999).

    Article  Google Scholar 

  4. Holcombe, C. Helicobacter pylori: The African enigma. Gut 33 , 429–431 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  6. Mohammadi, M., Czinn, S., Redline, R. & Nedrud, J. Helicobacter-specific cell-mediated immune responses display a predominant Th1 phenotype and promote a delayed-type hypersensitive response in the stomachs of mice. J. Immunol. 156, 4729–4738 (1996).

    CAS  PubMed  Google Scholar 

  7. Bamford, K.B. et al. Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastroenterology 114, 482–492 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Eaton, K.A., Ringler, S.R. & Danon, S.J. Murine splenocytes induce severe gastritis and delayed type hypersensitivity and suppress bacterial colonization in Helicobacter pylori-infected SCID mice. Infect. Immun. 67, 4594–1602 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Roth, K.A., Kapadia, S.B., Martin, S.M. & Lorenz, R.G. Cellular immune responses are essential for the development of Helicobacter felis-associated gastric pathology. J. Immunol. 163, 1490–1497 (1999).

    CAS  PubMed  Google Scholar 

  10. Finkelman, F.D. et al. Cytokine regulation of host defense against parasitic gastrointesinal nematodes: lessons from studies with rodent models. Annu. Rev. Immunol. 15, 505–533 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  11. Sallusto, F., Mackay, C.R. & Lanzavecchia, A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277, 2005 –2007 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Bonecchi, R. et al. Differential expression of chemokine receptors and chemotactic responsiveness of Type 1 helper cells (Th1s) and Th2s. J. Exp. Med. 187, 129–134 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loetscher, P. et al. CCR5 is characteristic of Th1 lymphocytes. Nature 391, 344–345 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  14. Qin, S. et al. The chemokines receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J. Clin. Invest. 101, 746–754 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sawai, N. et al. Role of gamma interferon in Helicobacter pylori-induced gastric inflammatory responses in a mouse model. Infect. Immun. 67, 279–285 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sakagami, T. et al. Atrophic gastric changes in both Helicobacter felis and Helicobacter pylori infected mice are host dependent and separate from antral gastritis. Gut 39, 639– 648 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taub, D.D. et al. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J. Exp. Med. 177, 1809– 1814 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Stellato, C. et al. Expression of the chemokine RANTES by a human bronchial epithelial cell line. Modulation by cytokines and glucocorticoids. J. Immunol. 155, 410–418 ( 1995).

    CAS  PubMed  Google Scholar 

  19. Zhou, Z.H. et al. IFN-γ induction of the human monocyte chemoattractant protein (hMCP)-1 gene in astrocytoma cells: functional interaction between an IFN—activated site and a GC-rich element. J. Immunol. 160, 3908–3916 ( 1998).

    CAS  PubMed  Google Scholar 

  20. Fox, J.G. et al. Hypertrophic gastropathy in Helicobacter felis infected wildtype C57BL/6 mice and p53 hemizygous transgenic mice. Gastroenterology 110, 155–166 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  21. Berg, D.J., Lynch, N.A., Lynch, R.G. & Lauricella, D.M. Rapid development of severe hyperplastic gastritis with gastric epithelial dedifferentiation in Helicobacter felis-infected IL-10−/− mice. Am. J. Pathol. 152, 1377– 1386 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, T. et al. Synergistic interaction between hypergastrinemia and Helicobacter infection in a mouse model of gastric carcinoma. Gastroenterology 118, 36–47 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  23. Goto, T. et al. Local secretory immunoglobulin A and post immunization gastritis correlate with protection against Helicobacter pylori infection after oral vaccination of mice. Infect. Immun. 67, 2531–2539 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Marshall, A.J. et al. Toxoplasma gondii and Schistosoma mansonisynergize to promote hepatocyte dysfunction associated with high levels of plasma TNF-α and early death in C57BL/6 mice. J. Immunol. 163, 2089–2097 (1999).

    CAS  PubMed  Google Scholar 

  25. Behnke, J.M. & Brailsford, T.H. The dynamics of trickle infections with Heligmosomoides polygyrus in syngeneic strains of mice. J Parasitol 22, 351–359 (1992).

    Google Scholar 

  26. Monroy, F.G. & Enriquez, F.J. Heligmosomoides polygyrus : A model for chronic gastrointestinal helminthiasis. Parasitol. Today 8, 49–54 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  27. Chan, M.S. The global burden of intestinal nematode infections-fifty years on. Parasitol. Today 13, 438–443 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Barnish, G. & Ashford, R.W. Stronglyloides cf. fuelleborni and other intestinal helminths in Papua New Guinea: distribution according to environmental factors. Parassitologia 32, 245–263 (1990).

    CAS  PubMed  Google Scholar 

  29. Correa, P. et al. Helicobacter pylori and gastric carcinoma: serum antibody prevalence in populations with contrasting cancer risks. Cancer 66, 2569–2574 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  30. Schaap, H.B., Den Dulk, M.M.O. & Polderman, A.M. Schistosomiasis in the Yemen Arab Republic. Prevalence of Schistosoma mansoni and S. haematobium infection among schoolchildren in the central highlands and their relation to altitude. Trop. Geogr. Med. 44, 19–22 ( 1992).

    CAS  PubMed  Google Scholar 

  31. Genta, R.M., Gurer, I.E. & Graham, D.Y. Geographical pathology of Helicoboacter pylori infection: is there more than one gastritis? Ann. Med. 5, 595–599 (1995).

    Article  Google Scholar 

  32. Appleton, C.G. & Gouws, E. The distribution of common intestinal nematodes along an altitudinal transect in KwaZulu-Natal, South Africa. Ann. Trop. Med. Parasitol. 90, 181–188 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Jemaneh, L. Comparative prevalences of some common intestinal helminth infections in different altitudinal regions in Ethiopia. Ethiop. Med. J. 36 , 1–8 (1998).

    CAS  PubMed  Google Scholar 

  34. Shi, H.N., Scott, M.E., Koski, K.G., Boulay, M. & Stevenson, M.M. Energy restriction and severe zinc deficiency influence growth, survival and reproduction of Heligmosomoides polygyrus (Nematoda) during primary and challenge infections in mice. Parasitology 110, 599–609 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Whary, M.T. et al. Chronic active hepatitis induced by Helicobacter hepaticus in the A/JCr mouse is associated with a Th1 cell-mediated immune response . Infect. Immun. 66, 3142– 3148 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fox, J.G. et al. High salt diet induces gastric epithelial hyperplasia, parietal cell loss, and enhances Helicobacter pylori colonization in C57BL/6 mice. Cancer Res. 59, 4823– 4828 (1999).

    CAS  PubMed  Google Scholar 

  37. Shi, H.N., Ingui, C.J., Dodge, I. & Nagler-Anderson, C. A helminth-induced mucosal Th2 response alters nonresponsiveness to oral administration of a soluble antigen. J. Immunol. 160, 2449– 2455 (1998).

    CAS  PubMed  Google Scholar 

  38. Pronovost, A.D., Rose, S.L., Pawlak, W., Robin, H. & Schneider, R. Evaluation of a new immunodiagnostic assay for Helicobacter pylori antibody detection: correlation with histopathological and microbiological results. J. Clin. Microbiol. 32, 46– 50 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong, H., Anderson, W.D., Cheng, T. & Riabowol, K.T. Monitoring mRNA expression by polymerase chain reaction: the “primer dropping” method. Analytical Biochem. 223, 251–258 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Podolsky and A. Luster for critical review of the manuscript. This work was supported by National Institutes of Health grants AI37740 (J.G.F.), CA67529 (J.G.F.) CA674463 (T.C.W. and J.G.F) and DK47017 (C.N.A.) and the Center for the Study of Inflammatory Bowel Disease at Massachusetts General Hospital (DK43351). H.N.S. was supported by a training fellowship from the Crohn's and Colitis Foundation of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Fox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, J., Beck, P., Dangler, C. et al. Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces helicobacter-induced gastric atrophy. Nat Med 6, 536–542 (2000). https://doi.org/10.1038/75015

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75015

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing