Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antagonism of cytotoxic T-lymphocyte activation by soluble CD8

Abstract

The CD8 co-receptor is important in the differentiation and selection of class I MHC-restricted T cells during thymic development, and in the activation of mature T lymphocytes in response to antigen. Here we show that soluble CD8αα receptor, despite an extremely low affinity for MHC, inhibits activation of cytotoxic lymphocytes by obstructing CD3 ζ-chain phosphorylation. We propose a model for this effect that involves interference of productive receptor multimerization at the T-cell surface. These results provide new insights into the mechanism of T-cell activation and evidence that CD8 function is exquisitely sensitive to disruption, an effect that might be exploited by molecular therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of CTL activation by sCD8αα receptor.
Figure 2: Inhibition of CTL lysis by soluble CD8αα is correlated to MHC affinity.
Figure 3: Effect of sCD8αα on early protein tyrosine phosphorylation events in CD8-dependent and independent CTLs.
Figure 4: Sedimentation analysis of sCD8αα shows no indication of multimers.

Similar content being viewed by others

References

  1. Townsend, A. & Bodmer, H. Antigen recognition by class I-restricted T lymphocytes. Annu. Rev. Immunol. 7, 601 –624 (1989).

    Article  CAS  Google Scholar 

  2. Doherty, P.C. T cells and viral infections. Br. Med. Bull. 41, 7–14 (1985).

    Article  CAS  Google Scholar 

  3. Tanaka, K., Yoshioka, T., Bieberich, C. & Jay, G. Role of the major histocompatibility complex class I antigens in tumor growth and metastasis. Annu. Rev. Immunol. 6, 359 –380 (1988).

    Article  CAS  Google Scholar 

  4. Mason, D.W. & Morris, P.J. Effector mechanisms in allograft rejection. Annu. Rev. Immunol. 4, 119– 145 (1986).

    Article  CAS  Google Scholar 

  5. Fung Leung, W.P. et al. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell 65, 443– 449 (1991).

    Article  CAS  Google Scholar 

  6. Fung Leung, W.P. et al. CD8 is needed for positive selection but differentially required for negative selection of T cells during thymic ontogeny. Eur. J. Immunol. 23, 212–216 (1993).

    Article  CAS  Google Scholar 

  7. Teh, H.S. et al. Participation of CD4 coreceptor molecules in T-cell repertoire selection. Nature 349, 241– 243 (1991).

    Article  CAS  Google Scholar 

  8. Killeen, N., Moriarty, A., Teh, H.S. & Littman, D.R. Requirement for CD8-major histocompatibility complex class I interaction in positive and negative selection of developing T cells. J. Exp. Med. 176, 89–97 (1992).

    Article  CAS  Google Scholar 

  9. Zamoyska, R. The CD8 coreceptor revisited: one chain good, two chains better. Immunity 1, 243–246 ( 1994).

    Article  CAS  Google Scholar 

  10. Turner, J.M. et al. Interaction of the unique N-terminal region of tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. Cell 60, 755–765 (1990).

    Article  CAS  Google Scholar 

  11. Van Oers, N.S. et al. Disruption of CD8-dependent negative and positive selection of thymocytes is correlated with a decreased association between CD8 and the protein tyrosine kinase, p56lck. Eur. J. Immunol. 22 , 735–743 (1992).

    Article  CAS  Google Scholar 

  12. Anel, A., O'Rourke, A.M., Kleinfeld, A.M. & Mescher, M.F. T cell receptor and CD8-dependent tyrosine phosphorylation events in cytotoxic T lymphocytes: activation of p56lck by CD8 binding to class I protein. Eur. J. Immunol. 26, 2310–2319 (1996).

    Article  CAS  Google Scholar 

  13. Kersh, E.N., Shaw, A.S. & Allen, P.M. Fidelity of T cell activation through multistep T cell receptor zeta phosphorylation. Science 281, 572–575 (1998).

    Article  CAS  Google Scholar 

  14. Kwan Lim, G.E., Ong, T., Aosai, F., Stauss, H. & Zamoyska, R. Is CD8 dependence a true reflection of TCR affinity for antigen? Int. Immunol. 5, 1219– 1228 (1993).

    Article  CAS  Google Scholar 

  15. Yoon, S.T., Dianzani, U., Bottomly, K. & Janeway, C.A., Jr. Both high and low avidity antibodies to the T cell receptor can have agonist or antagonist activity. Immunity 1, 563– 569 (1994).

    Article  CAS  Google Scholar 

  16. Glaichenhaus, N., Shastri, N., Littman, D.R. & Turner, J.M. Requirement for association of p56lck with CD4 in antigen-specific signal transduction in T cells. Cell 64, 511– 520 (1991).

    Article  CAS  Google Scholar 

  17. Williams, O., Vukmanovic, S. & Zamoyska, R. Phosphorylation of murine CD8 alpha is not essential for responses of T cell hybridomas to antigen. Int. Immunol. 3, 785–792 (1991).

    Article  CAS  Google Scholar 

  18. O'Rourke, A.M. & Mescher, M.F. Cytotoxic T-lymphocyte activation involves a cascade of signalling and adhesion events. Nature 358, 253–255 ( 1992).

    Article  CAS  Google Scholar 

  19. Chan, I.T. et al. Thymic selection of cytotoxic T cells independent of CD8 alpha-Lck association. Science 261, 1581– 1584 (1993).

    Article  CAS  Google Scholar 

  20. Norment, A.M., Salter, R.D., Parham, P., Engelhard, V.H. & Littman, D.R. Cell-cell adhesion mediated by CD8 and MHC class I molecules. Nature 336, 79– 81 (1988).

    Article  CAS  Google Scholar 

  21. O'Rourke, A.M., Rogers, J. & Mescher, M.F. Activated CD8 binding to class I protein mediated by the T-cell receptor results in signalling. Nature 346, 187–189 (1990).

    Article  CAS  Google Scholar 

  22. Salter, R.D. et al. A binding site for the T-cell co-receptor CD8 on the alpha 3 domain of HLA-A2. Nature 345, 41– 46 (1990).

    Article  CAS  Google Scholar 

  23. Connolly, J.M., Hansen, T.H., Ingold, A.L. & Potter, T.A. Recognition by CD8 on cytotoxic T lymphocytes is ablated by several substitutions in the class I alpha 3 domain: CD8 and the T-cell receptor recognize the same class I molecule. Proc. Natl. Acad. Sci. USA 87, 2137–2141 (1990).

    Article  CAS  Google Scholar 

  24. Luescher, I.F. et al. CD8 modulation of T-cell antigen receptor-ligand interactions on living cytotoxic T lymphocytes. Nature 373, 353–356 (1995).

    Article  CAS  Google Scholar 

  25. Garcia, K.C. et al. CD8 enhances formation of stable T-cell receptor/MHC class I molecule complexes. Nature 384, 577– 581 (1996).

    Article  CAS  Google Scholar 

  26. Gao, G.F. et al. Crystal structure of the complex between human CD8 alpha(alpha) and HLA-A2. Nature 387, 630– 634 (1997).

    Article  CAS  Google Scholar 

  27. Garboczi, D.N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134– 141 (1996).

    Article  CAS  Google Scholar 

  28. Wyer, J.R. et al. T Cell Receptor and Coreceptor CD8αα Bind Peptide-MHC Independently and with Distinct Kinetics. Immunity 10, 219–225 (1999).

    Article  CAS  Google Scholar 

  29. Jameson, S.C., Carbone, F.R. & Bevan, M.J. Clone-specific T cell receptor antagonists of major histocompatibility complex class I-restricted cytotoxic T cells. J. Exp. Med. 177, 1541–1550 (1993).

    Article  CAS  Google Scholar 

  30. De Magistris, M.T. et al. Antigen analog-major histocompatibility complexes act as antagonists of the T cell receptor. Cell 68, 625– 634 (1992).

    Article  CAS  Google Scholar 

  31. Price, D.A. et al. The influence of antigenic variation on cytotoxic T lymphocyte responses in HIV-1 infection. J. Mol. Med. 76, 699–708 (1998).

    Article  CAS  Google Scholar 

  32. Sewell, A.K., Harcourt, G.C., Goulder, P.J., Price, D.A. & Phillips, R.E. Antagonism of cytotoxic T lymphocyte-mediated lysis by natural HIV-1 altered peptide ligands requires simultaneous presentation of agonist and antagonist peptides. Eur. J. Immunol. 27, 2323–2329 (1997).

    Article  CAS  Google Scholar 

  33. Bertoletti, A. et al. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells. Nature 369, 407–410 (1994).

    Article  CAS  Google Scholar 

  34. Klenerman, P. et al. Cytotoxic T-cell activity antagonized by naturally occurring HIV-1 Gag variants. Nature 369, 403– 407 (1994).

    Article  CAS  Google Scholar 

  35. Allen, P.M. & Zinkernagel, R.M. Promethean viruses? Nature 369, 355–356 ( 1994).

    Article  CAS  Google Scholar 

  36. Preckel, T., Grimm, R., Martin, S. & Weltzien, H.U. Altered hapten ligands antagonize trinitrophenyl-specific cytotoxic T cells and block internalization of hapten-specific receptors. J. Exp. Med. 185, 1803–1813 (1997).

    Article  CAS  Google Scholar 

  37. Purbhoo, M.A. et al. Copresentation of natural HIV-1 agonist and antagonist ligands fails to induce the T cell receptor signaling cascade. Proc. Natl. Acad. Sci. USA 95, 4527–4532 (1998).

    Article  CAS  Google Scholar 

  38. Viola, A. & Lanzavecchia, A. T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104–106 (1996).

    Article  CAS  Google Scholar 

  39. Cerundolo, V., Tse, A.G., Salter, R.D., Parham, P. & Townsend, A. CD8 independence and specificity of cytotoxic T lymphocytes restricted by HLA-Aw68.1. Proc. R. Soc. Lond. B. Biol. Sci. 244, 169–177 (1991).

    Article  CAS  Google Scholar 

  40. Lyons, D.S. et al. A TCR binds to antagonist ligands with lower affinities and faster dissociation rates than to agonists. Immunity 5, 53–61 (1996).

    Article  CAS  Google Scholar 

  41. Kessler, B.M., Bassanini, P., Cerottini, J.C. & Luescher, I.F. Effects of epitope modification on T cell receptor-ligand binding and antigen recognition by seven H-2Kd-restricted cytotoxic T lymphocyte clones specific for a photoreactive peptide derivative. J. Exp. Med. 185, 629–640 (1997).

    Article  CAS  Google Scholar 

  42. Hampl, J., Chien, Y.H. & Davis, M.M. CD4 augments the response of a T cell to agonist but not to antagonist ligands. Immunity 7, 379 –385 (1997).

    Article  CAS  Google Scholar 

  43. Davis, M.M. et al. Ligand recognition by alphabeta T cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).

    Article  CAS  Google Scholar 

  44. Boniface, J.J. et al. Initiation of signal transduction through the T cell receptor requires the peptide multivalent engagement of MHC ligands. Immunity 9, 459–466 ( 1998).

    Article  CAS  Google Scholar 

  45. Choksi, S., Jameson, B.A. & Korngold, R. A structure-based approach to designing synthetic CD8alfa peptides that can inhibit cytotoxic T-lymphocyte reponses. Nature Med. 4, 309–314 ( 1998).

    Article  CAS  Google Scholar 

  46. Giblin, P., Ledbetter, J.A. & Kavathas, P. A secreted form of the human lymphocyte cell surface molecule CD8 arises from alternative splicing. Proc. Natl. Acad. Sci. USA 86, 998–1002 ( 1989).

    Article  CAS  Google Scholar 

  47. Ho, A.D. et al. Plasma levels of soluble CD8 antigen and interleukin-2 receptor antigen in patients with hairy cell leukemia, relationship with splenectomy and with clinical response to therapy. Leukemia 3, 718–723 (1989).

    CAS  PubMed  Google Scholar 

  48. Zielinski, C.C., Pesau, B. & Muller, C. Soluble interleukin-2 receptor and soluble CD8 antigen in active rheumatoid arthritis. Clin. Immunol. Immunopathol. 57, 74–82 (1990).

    Article  CAS  Google Scholar 

  49. Maimone, D. & Reder, A.T. Soluble CD8 levels in the CSF and serum of patients with multiple sclerosis. Neurology 41, 851–854 (1991).

    Article  CAS  Google Scholar 

  50. Linker Israeli, M. et al. Elevated in vivo and in vitro secretion of CD8-alpha molecules in patients with systemic lupus erythematosus. J. Immunol. 152, 3158–3167 (1994).

    CAS  PubMed  Google Scholar 

  51. Agostini, C. et al. Increased levels of soluble CD8 molecule in the serum of patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related disorders. Clin. Immunol. Immunopathol. 50, 146– 153 (1989).

    Article  CAS  Google Scholar 

  52. Reinherz, E.L. & Schlossman, S.F. The differentiation and function of human T lymphocytes. Cell 19, 821–827 (1980).

    Article  CAS  Google Scholar 

  53. Price, D.A. et al. Antigen specific release of beta-chemokines by anti-HIV1 cytotoxic T lymphocytes. Curr. Biol. 8, 355– 358 (1998).

    Article  CAS  Google Scholar 

  54. Cobbold, S.P., Qin, S., Leong, L.Y., Martin, G. & Waldmann, H. Reprogramming the immune system for peripheral tolerance with CD4 and CD8 monoclonal antibodies. Immunol. Rev. 129, 165–201 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. van der Merwe, B. Willcox and J. Wyer for sharing unpublished results; S. Davis and C. O'Callaghan for suggestions and critical review; R. Tan for the gift of clone 10; and P. Easterbrook, B. Gazzard and P. Giangrande for providing patient samples. This work was supported by the Wellcome Trust and the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bent K. Jakobsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sewell, A., Gerth, U., Price, D. et al. Antagonism of cytotoxic T-lymphocyte activation by soluble CD8. Nat Med 5, 399–404 (1999). https://doi.org/10.1038/7398

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7398

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing