Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TNFα regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation

Abstract

It is generally believed that the vascular endothelium serves as an inflammatory barrier by providing a nonadherent surface to leukocytes. Here, we report that Fas ligand (FasL) is expressed on vascular endothelial cells (ECs) and that it may function to actively inhibit leukocyte extravasation. TNFα downregulates FasL expression with an accompanying decrease in EC cytotoxicity toward co-cultured Fas-bearing cells. Local administration of TNFα to arteries downregulates endothelial FasL expression and induces mononuclear cell infiltration. Constitutive FasL expression markedly attenuates TNFα-induced cell infiltration and adherent mononuclear cells undergo apoptosis under these conditions. These findings suggest that endothelial FasL expression can negatively regulate leukocyte extravasation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ross, R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801–809 (1993).

    Article  CAS  Google Scholar 

  2. Springer, T.A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Ann. Rev. Physiol. 57, 827–872 (1995).

    Article  CAS  Google Scholar 

  3. Pfieffer, K. et al. Mice deficient for the 55kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73, 457–467 (1993).

    Article  Google Scholar 

  4. Nagata, S. & Golstein, P., Fas death factor. Science 267, 1449–1456 (1995).

    Article  CAS  Google Scholar 

  5. Bellgrau, D. et al. A role of CD95 ligand in preventing graft rejection. Nature 377, 630–632 (1995).

    Article  CAS  Google Scholar 

  6. Griffith, T.S., Brunner, T., Fletcher, S.M., Green, D.R. & Ferguson, T.A. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

    Article  CAS  Google Scholar 

  7. Kang, S.-M. et al. Immune response and myoblasts that express Fas ligand. Science 278, 1322–1324 (1997).

    Article  CAS  Google Scholar 

  8. Seino, K., Kayagaki, N., Okumura, K. & Yagita, H. Antitumor effect of locally produced CD95 ligand. Nature Med. 3, 165–170 (1997).

    Article  CAS  Google Scholar 

  9. Kang, S.-M. et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nature Med. 3, 738–743 (1997).

    Article  CAS  Google Scholar 

  10. Strand, S. et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand expressing tumor cells-A mechanism of immune evasion? Nature Med. 2, 1361–1366 (1996).

    Article  CAS  Google Scholar 

  11. Hahne, M. et al. Melanoma cell expression of Fas (Apo-1/CD95) ligand: Implications for tumor immune escape. Science 274, 1363–1366 (1996).

    Article  CAS  Google Scholar 

  12. Niehans, G.A. et al. Human lung carcinomas express Fas ligand. Cancer Res. 57, 1007–1012 (1997).

    CAS  PubMed  Google Scholar 

  13. Suda, T. & Nagata, S. Purification and characterization of the Fas-ligand that induces apoptosis. J. Exp. Med. 179, 873–879 (1994).

    Article  CAS  Google Scholar 

  14. Sata, M. et al. Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response. Proc. Natl. Acad. Sci. USA 95, 1213–1217 (1998).

    Article  CAS  Google Scholar 

  15. Muruve, D. et al. Adenovirus mediated expression of Fas ligand induces hepatic apoptosis after systemic administration and apoptosis of ex vivo infected pancreatic islet allografts and isografts. Human Gene Ther. 8, 955–963 (1997).

    Article  CAS  Google Scholar 

  16. Luscinskas, F.W. & Gimbrone, M.A. Endothelial-dependent mechanism in chronic inflammatory leukocyte recruitment. Ann. Rev. Med. 47, 413–421 (1996).

    Article  CAS  Google Scholar 

  17. Adams, M.R., Jessup, W., Hailstones, D. & Celermajer, D.S. L-Arginine reduces human monocyte adhesion to vascular endothelium and endothelial expression of cell adhesion molecules. Circulation 95, 662–668 (1997).

    Article  CAS  Google Scholar 

  18. Tanaka, M. et al. Fas ligand in human serum. Nature Med. 2, 317–322 (1996).

    Article  CAS  Google Scholar 

  19. Xu, X.N. et al. Evasion of cytotoxic T lymphocyte (CTL) responses by Nef-dependent induction of Fas ligand (CD95L) expression on simian immunodeficiency virus-infected cells. J. Exp. Med. 186, 7–16 (1997).

    Article  CAS  Google Scholar 

  20. Parums, D. et al. JC70, a new monoclonal antibody that detects vascular endothelium associated antigen on routinely processed tissue sections. J. Clin. Pathol. 43, 752–757 (1990).

    Article  CAS  Google Scholar 

  21. Picker, L.J. & Butcher, E.C. Physiological and molecular mechanisms of lymphocyte homing. Ann. Rev. Immunol. 10, 561–591 (1993).

    Article  Google Scholar 

  22. Richardson, B.C., Lalwani, N.D., Johnson, K.J. & Marks, R.M. Fas ligation triggers apoptosis in macrophages but not endothelial cells. Eur. J. Immunol. 24, 2640–2645 (1994).

    Article  CAS  Google Scholar 

  23. Wick, G., Schett, G., Amberger, R., Kleindienst, R. & Xu, Q. Is atherosclerosis an im-munologically mediated disease? Immunol. Today 16, 27–33 (1995).

    Article  CAS  Google Scholar 

  24. Jonasson, L., Holm, J., Skalli, O., Bondjers, C. & H ansson, G.K. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6, 131–138 (1986).

    Article  CAS  Google Scholar 

  25. Munro, J.M., van der Walt, J.D., Munro, C.S., Chalmers, J.A.C. & Cox, E. An immunohistochemical analysis of human aortic fatty streaks. Hum. Path. 18, 375–380 (1987).

    Article  CAS  Google Scholar 

  26. Emeson, E.E. & Robertson, A.L. T lymphocytes in aortic and coronary intimas: their potential role in atherogenesis. Am. J. Pathol. 130, 369–376 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Van der Wal, A.C., Das, P.K., Van de Berg, D.B., Van der Loos, C.M. & Becker, A.E. Atherosclerotic lesions in human: in situ immunophenotypic analysis suggesting an immune mediated response. Lab. Invest. 61, 166–170 (1989).

    CAS  PubMed  Google Scholar 

  28. Tanaka, H., Swanson, S.J., Sukhova, G., Schoen, F.J. & Libby, P. Smooth muscle cells of the coronary arterial tunica media express tumor necrosis factor-a and proliferate during acute rejection of rabbit cardiac allografts. Am. J. Pathol. 147, 617–626 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Libby, P. & Hansson, G.K. Involvement of the immune system in human atherogenesis: Current knowledge and unanswered questions. Lab. Invest. 64, 5–15 (1991).

    CAS  Google Scholar 

  30. Billingham, M.E. Cardiac transplant atherosclerosis. Transpl. Proc. 19, 19–25 (1987).

    CAS  Google Scholar 

  31. Hansson, G.K., Holm, J. & Jonasson, L. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am. I. Pathol. 135, 169–175 (1989).

    CAS  Google Scholar 

  32. Clausell, N., Milossi, S., Sett, S. & Rabinovitch, M. In vivo blockade of tumor necrosis factor-α in cholesterol-fed rabbits after cardiac transplant inhibits acute coronary artery neointimal formation. Circulation 89, 2768–2779 (1994).

    Article  CAS  Google Scholar 

  33. Jaffe, E.A., Nachman, R.L., Becker, C.G. & Minick, R.C. Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J. Clin. Invest. 52, 2745–2756 (1973).

    Article  CAS  Google Scholar 

  34. Pickering, J.G. et al. Smooth muscle cell outgrowth from human atherosclerotic plaque: implications for the assessment of lesion biology. J. Am. Coll. Cardiol. 20, 1430–1439 (1992).

    Article  CAS  Google Scholar 

  35. Matzinger, P. The JAM test. A simple assay for DNA fragmentation and cell death. J. Immunol. Methods. 145, 185–192 (1991).

    Article  CAS  Google Scholar 

  36. McGahon, A.J. et al. The end of the cell line: Methods for the study of apoptosis in vitro, in Cell death Vol. 46 (eds Schwartz, L.M. & Osborne, B.A.) 153–185 (Academic Press, Inc, San Diego, 1995).

    Google Scholar 

  37. Losordo, D.W. et al. Use of the rabbit ear artery to serially assess foreign protein secretion after site-specific arterial gene transfer in vivo. Circulation 89, 785–792 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sata, M., Walsh, K. TNFα regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation. Nat Med 4, 415–420 (1998). https://doi.org/10.1038/nm0498-415

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0498-415

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing