Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Getting biological about the genetics of diabetes

Abstract

New technology has provided methods for collecting large amounts of data reflecting gene expression, metabolite and protein abundance, and post-translational modification of proteins. Integration of these various data sets enable the genetic mapping of many new phenotypes and facilitates the creation of network models that link genetic variation with intermediate traits leading to human disease. The first round of genome-wide association studies has not accounted for common human diseases to the extent that was expected. New phenotyping approaches and methods of data integration should bring these studies closer to their promised goals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constructing causal networks from genetic and molecular phenotyping data sets.

References

  1. Tinkelenberg, A.H. et al. J. Biol. Chem. 275, 40667–40670 (2000).

    Article  CAS  Google Scholar 

  2. O'Rahilly, S. Nature 462, 307–314 (2009).

    Article  CAS  Google Scholar 

  3. Zeggini, E. et al. Nat. Genet. 40, 638–645 (2008).

    Article  CAS  Google Scholar 

  4. Prokopenko, I., McCarthy, M.I. & Lindgren, C.M. Trends Genet. 24, 613–621 (2008).

    Article  CAS  Google Scholar 

  5. Romeo, S. et al. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  Google Scholar 

  6. Tong, Y. et al. BMC Med. Genet. 10, 15 (2009).

    Article  Google Scholar 

  7. Cohen, J.C. et al. Science 305, 869–872 (2004).

    Article  CAS  Google Scholar 

  8. Kathiresan, S. et al. Nat. Genet. 41, 56–65 (2009).

    Article  CAS  Google Scholar 

  9. Romeo, S. et al. Nat. Genet. 39, 513–516 (2007).

    Article  CAS  Google Scholar 

  10. Lu, D. et al. Nature 371, 799–802 (1994).

    Article  CAS  Google Scholar 

  11. Michaud, E.J. et al. Proc. Natl. Acad. Sci. USA 91, 2562–2566 (1994).

    Article  CAS  Google Scholar 

  12. Bultman, S.J., Michaud, E.J. & Woychik, R.P. Cell 71, 1195–1204 (1992).

    Article  CAS  Google Scholar 

  13. Loos, R.J. et al. Nat. Genet. 40, 768–775 (2008).

    Article  CAS  Google Scholar 

  14. Coleman, D.L. Diabetologia 14, 141–148 (1978).

    Article  CAS  Google Scholar 

  15. Zhang, Y. et al. Nature 372, 425–432 (1994).

    Article  CAS  Google Scholar 

  16. Tartaglia, L.A. et al. Cell 83, 1263–1271 (1995).

    Article  CAS  Google Scholar 

  17. Farooqi, S. & O'Rahilly, S. Endocr. Rev. 27, 710–718 (2006).

    Article  CAS  Google Scholar 

  18. Farooqi, I.S. & O'Rahilly, S. Am. J. Clin. Nutr. 89, 980S–984S (2009).

    Article  CAS  Google Scholar 

  19. Talbot, C.J. et al. Nat. Genet. 21, 305–308 (1999).

    Article  CAS  Google Scholar 

  20. Chesler, E.J. et al. Mamm. Genome 19, 382–389 (2008).

    Article  Google Scholar 

  21. Bain, J.R. et al. Diabetes 58, 2429–2443 (2009).

    Article  CAS  Google Scholar 

  22. Yang, Q. et al. Nature 436, 356–362 (2005).

    Article  CAS  Google Scholar 

  23. Graham, T.E. et al. N. Engl. J. Med. 354, 2552–2563 (2006).

    Article  CAS  Google Scholar 

  24. Gunton, J.E. et al. Cell 122, 337–349 (2005).

    Article  CAS  Google Scholar 

  25. Mootha, V.K. et al. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  Google Scholar 

  26. Patti, M.E. et al. Proc. Natl. Acad. Sci. USA 100, 8466–8471 (2003).

    Article  CAS  Google Scholar 

  27. Koves, T.R. et al. Cell Metab. 7, 45–56 (2008).

    Article  CAS  Google Scholar 

  28. Cao, H. et al. Cell 134, 933–944 (2008).

    Article  CAS  Google Scholar 

  29. Gillum, M.P. et al. Cell 135, 813–824 (2008).

    Article  CAS  Google Scholar 

  30. Kirchner, H. et al. Nat. Med. 15, 741–745 (2009).

    Article  CAS  Google Scholar 

  31. Newgard, C.B. et al. Cell Metab. 9, 311–326 (2009).

    Article  CAS  Google Scholar 

  32. Huffman, K.M. et al. Diabetes Care 32, 1678–1683 (2009).

    Article  CAS  Google Scholar 

  33. Schadt, E.E. Nature 461, 218–223 (2009).

    Article  CAS  Google Scholar 

  34. Schadt, E.E. et al. PLoS Biol. 6, e107 (2008).

    Article  Google Scholar 

  35. Choi, Y. & Kendziorski, C. Bioinformatics 25, 2780–2786 (2009).

    Article  CAS  Google Scholar 

  36. Lai, Y., Wu, B., Chen, L. & Zhao, H. Bioinformatics 20, 3146–3155 (2004).

    Article  CAS  Google Scholar 

  37. Zhang, B. & Horvath, S. Stat. Appl. Genet. Mol. Biol. 4, Article17 (2005).

    Article  Google Scholar 

  38. Keller, M.P. et al. Genome Res. 18, 706–716 (2008).

    Article  CAS  Google Scholar 

  39. Ferrara, C.T. et al. PLoS Genet. 4, e1000034 (2008).

    Article  Google Scholar 

  40. Chaibub Neto, E., Ferrara, C.T., Attie, A.D. & Yandell, B.S. Genetics 179, 1089–1100 (2008).

    Article  Google Scholar 

  41. Dumas, M.E. et al. Nat. Genet. 39, 666–672 (2007).

    Article  CAS  Google Scholar 

  42. Gieger, C. et al. PLoS Genet. 4, e1000282 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher B Newgard or Alan D Attie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newgard, C., Attie, A. Getting biological about the genetics of diabetes. Nat Med 16, 388–391 (2010). https://doi.org/10.1038/nm0410-388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0410-388

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research