Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complement facilitates early prion pathogenesis

Abstract

New-variant Creutzfeldt–Jakob disease and scrapie are typically initiated by extracerebral exposure to the causative agent, and exhibit early prion replication in lymphoid organs1,2. In mouse scrapie, depletion of B-lymphocytes prevents neuropathogenesis after intraperitoneal inoculation3,4, probably due to impaired lymphotoxin-dependent maturation of follicular dendritic cells5 (FDCs), which are a major extracerebral prion reservoir6. FDCs trap immune complexes with Fc-γ receptors and C3d/C4b-opsonized antigens with CD21/CD35 complement receptors. We examined whether these mechanisms participate in peripheral prion pathogenesis. Depletion of circulating immunoglobulins or of individual Fc-γ receptors had no effect on scrapie pathogenesis if B-cell maturation was unaffected. However, mice deficient in C3, C1q, Bf/C2, combinations thereof7,8 or complement receptors9 were partially or fully protected against spongiform encephalopathy upon intraperitoneal exposure to limiting amounts of prions. Splenic accumulation of prion infectivity and PrPSc was delayed, indicating that activation of specific complement components is involved in the initial trapping of prions in lymphoreticular organs early after infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scrapie pathogenesis in mice with defects in immunoglobulin production and/or in the complement system.
Figure 2: Prion accumulation in complement-deficient mice.
Figure 3: Immunofluorescence analysis of PrPC expression in spleen follicles of mice with complement and complement receptor defects.

Similar content being viewed by others

References

  1. Hill, A.F., Zeidler, M., Ironside, J. & Collinge, J. Diagnosis of new variant Creutzfeldt-Jakob disease by tonsil biopsy. Lancet 349, 99 (1997).

    Article  CAS  Google Scholar 

  2. Fraser, H. & Dickinson, A.G. Pathogenesis of scrapie in the mouse: the role of the spleen. Nature 226, 462–463 (1970).

    Article  CAS  Google Scholar 

  3. Klein, M.A. et al. A crucial role for B cells in neuroinvasive scrapie. Nature 390, 687–690 (1997).

    Article  CAS  Google Scholar 

  4. Klein, M.A. et al. PrP expression in B lymphocytes is not required for prion neuroinvasion. Nature Med. 4, 1429–1433 (1998).

    Article  CAS  Google Scholar 

  5. Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257–1259 (2000).

    Article  CAS  Google Scholar 

  6. Kitamoto, T., Muramoto, T., Mohri, S., Dohura, K. & Tateishi, J. Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt-Jakob disease. J.Virol. 65, 6292–6295 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature Genet. 19, 56–59 (1998).

    Article  CAS  Google Scholar 

  8. Taylor, P.R. et al. A targeted disruption of the murine complement factor B gene resulting in loss of expression of three genes in close proximity, factor B, C2, and D17H6S45. J. Biol. Chem. 273, 1699–1704 (1998).

    Article  CAS  Google Scholar 

  9. Molina, H. et al. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc. Natl. Acad. Sci. USA 93, 3357–3361 (1996).

    Article  CAS  Google Scholar 

  10. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350, 423–426 (1991).

    Article  CAS  Google Scholar 

  11. Park, S.Y. et al. Resistance of Fc receptor-deficient mice to fatal glomerulonephritis. J. Clin. Invest. 102, 1229–1238 (1998).

    Article  CAS  Google Scholar 

  12. Takai, T., Ono, M., Hikida, M., Ohmori, H. & Ravetch, J.V. Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice. Nature 379, 346–349 (1996).

    Article  CAS  Google Scholar 

  13. Hazenbos, W.L. et al. Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc γ xsRIII (CD16) deficient mice. Immunity 5, 181–188 (1996).

    Article  CAS  Google Scholar 

  14. Szakal, A.K. & Hanna, M.G. Jr. The ultrastructure of antigen localization and viruslike particles in mouse spleen germinal centers. Exp. Mol. Pathol. 8, 75–89 (1968).

    Article  CAS  Google Scholar 

  15. Carroll, M.C. CD21/CD35 in B cell activation. Semin. Immunol. 10, 279–286 (1998).

    Article  CAS  Google Scholar 

  16. Yamakawa, M. & Imai, Y. Complement activation in the follicular light zone of human lymphoid tissues. Immunology 76, 378–384 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahearn, J.M. et al. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity 4, 251–262 (1996).

    Article  CAS  Google Scholar 

  18. Büeler, H. et al. High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol. Med. 1, 19–30 (1994).

    Article  Google Scholar 

  19. Croix, D.A. et al. Antibody response to a T-dependent antigen requires B cell expression of complement receptors. J. Exp. Med. 183, 1857–1864 (1996).

    Article  CAS  Google Scholar 

  20. Ebenbichler, C.F. et al. Human immunodeficiency virus type 1 activates the classical pathway of complement by direct C1 binding through specific sites in the transmembrane glycoprotein gp41. J. Exp. Med . 174, 1417–1424 (1991).

    Article  CAS  Google Scholar 

  21. Klickstein, L.B., Barbashov, S.F., Liu, T., Jack, R.M. & Nicholson-Weller, A. Complement receptor type 1 (CR1, CD35) is a receptor for C1q. Immunity 7, 345–355 (1997).

    Article  CAS  Google Scholar 

  22. Fischer, M.B. et al. Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 280, 582–585 (1998).

    Article  CAS  Google Scholar 

  23. Wu, X. et al. Impaired affinity maturation in Cr2−/− mice is rescued by adjuvants without improvement in germinal center development. J. Immunol. 165, 3119–3127 (2000).

    Article  CAS  Google Scholar 

  24. Hill, A.F. et al. Investigation of variant Creutzfeldt–Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 353, 183–189 (1999).

    Article  CAS  Google Scholar 

  25. Nemazee, D.A. & Burki, K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature 337, 562–566 (1989).

    Article  CAS  Google Scholar 

  26. Sitia, R., Neuberger, M.S. & Milstein, C. Regulation of membrane IgM expression in secretory B cells: translational and post-translational events. EMBO J. 6, 3969–3977 (1987).

    Article  CAS  Google Scholar 

  27. Seiler, P. et al. Enhanced virus clearance by early inducible lymphocytic choriomeningitis virus-neutralizing antibodies in immunoglobulin-transgenic mice. J. Virol. 72, 2253–2258 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Büeler, H.R. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993).

    Article  Google Scholar 

  29. Fischer, M. et al. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 15, 1255–1264 (1996).

    Article  CAS  Google Scholar 

  30. Prusiner, S.B. et al. Measurement of the scrapie agent using an incubation time interval assay. Ann. Neurol. 11, 353–358 (1982).

    Article  CAS  Google Scholar 

  31. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kosco for the FDC-M1 antibody; K. Rajewsky for μMT mice; C. Farquhar for the 1B3 antiserum; and C. Weissmann for critical reading of the manuscript. This work is supported by the Kanton of Zürich, the Bundesamt für Bildung und Wissenschaft, the Migros and Coop foundations, and by grants of the Swiss National Foundation to AA and RMZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Aguzzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, M., Kaeser, P., Schwarz, P. et al. Complement facilitates early prion pathogenesis. Nat Med 7, 488–492 (2001). https://doi.org/10.1038/86567

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing