Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy

Abstract

Ischemic peripheral neuropathy is a frequent, irreversible complication of lower extremity vascular insufficiency. We investigated whether ischemic peripheral neuropathy could be prevented and/or reversed by gene transfer of an endothelial cell mitogen designed to promote therapeutic angiogenesis. Intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor (VEGF) simultaneously with induction of hindlimb ischemia in rabbits abrogated the substantial decrease in motor and sensory nerve parameters, and nerve function recovered promptly. When gene transfer was administered 10 days after induction of ischemia, nerve function was restored earlier and/or recovered faster than in untreated rabbits. These findings are due in part to enhanced hindlimb perfusion. In addition, however, the demonstration of functional VEGF receptor expression by Schwann cells indicates a direct effect of VEGF on neural integrity as well. These findings thus constitute a new paradigm for the treatment of ischemic peripheral neuropathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time course of electrophysiologic parameters and calf blood pressure ratio for rabbits with hindlimb ischemia (untreated; black lines and bar; n=10); gene transfer 10 days after induction of ischemia (red dotted lines and red bar; n=10); and gene transfer at time of surgery (blue lines and bar; n=10).
Figure 2: Transverse sections of rabbit common peroneal nerve from an untreated, ischemic hindlimb (Epoxy resin section 1 μm in thickness, stained with toluidine blue).
Figure 3: Transverse section of common peroneal nerve from ischemic hindlimb, injected with 500 μg of phVEGF165 immediately after surgery (at the onset of ischemia).
Figure 4: Effect of rhVEGF165 on primary rat Schwann cell migration in a modified Boyden chamber chemotaxis assay.
Figure 5: Functional VEGF receptor expression in cultured Schwann cells.
Figure 6: VEGF acts as a survival factor for Schwann cells.

Similar content being viewed by others

References

  1. European Working Group on Critical Leg Ischemia, Second European consensus document on chronic critical leg ischemia. Circulation 84, IV-1–IV-26 (1991).

  2. Hunter, G.C., Song, G.W., Nayak, N.N., Zapotowski, D. & Guernsey, J.M. Peripheral nerve conduction abnormalities in lower extremity ischemia: the effects of revascularization. J. Surg. Res. 45, 96–103 ( 1988).

    Article  CAS  PubMed  Google Scholar 

  3. Miglietta, O. Electrophysiologic studies in chronic occlusive peripheral vascular disease . Arch. Phys. Med. Rehabil. 48, 89– 96 (1967).

    CAS  PubMed  Google Scholar 

  4. Eames, R.A. & Lange, L.S. Clinical and pathological study of ischemic neuropathy. J. Neurol. Neurosurg. Psychiatry 30, 215–226 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsurumi, Y. et al. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion . Circulation 94, 3281– 3290 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Bauters, C. et al. Physiologic assessment of augmented vascularity induced by VEGF in ischemic rabbit hindlimb. Am. J. Physiol. 267 , H1263–H1271 (1994).

    CAS  PubMed  Google Scholar 

  7. Bauters, C. et al. Site-specific therapeutic angiogenesis following systemic administration of vascular endothelial growth factor. J. Vasc. Surg. 21, 314–325 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  8. Bauters, C. et al. Recovery of disturbed endothelium-dependent flow in the collateral-perfused rabbit ischemic hindlimb after administration of vascular endothelial growth factor. Circulation 91, 2802– 2809 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Pu, L.Q. et al. A persistent hindlimb ischemia model in the rabbit. J. Invest. Surg. 7, 49–60 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Takeshita, S. et al. Vascular endothelial growth factor induces dose-dependent revascularization in a rabbit model of persistent limb ischemia. Circulation 90, II-228–II-234 (1994).

    CAS  Google Scholar 

  11. Takeshita, S. et al. Therapeutic angiogenesis following arterial gene transfer of vascular endothelial growth factor in a rabbit model of hindlimb ischemia . Biochem. Biophys. Res. Commun. 227, 628 –635 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Takeshita, S. et al. Therapeutic angiogenesis: A single intra-arterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hindlimb model. J. Clin. Invest. 93, 662–670 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rivard, A. et al. Age-dependent impairment of angiogenesis. Circulation 99, 111–120 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  14. Isner, J.M. et al. Arterial gene transfer for therapeutic angiogenesis in patients with peripheral artery disease. Hum. Gene Ther. 7, 959–988 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Anton, E.S., Weskamp, G., Reichhardt, L.F. & Mattew, W.D. Nerve growth factor and its low affinity receptor promote schwann cell migration . Proc. Natl. Acad. Sci. USA 91, 2795– 2799 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Soker, S., Takashima, S., Miao, H.Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Patel, M.K., Lymn, J.S., Clunn, G.F. & Hughes, A.D. Thrombospondin-1 is a potent mitogen and chemoattractant for human vascular smooth muscle cells . Arterioscler. Thromb. Vasc. Biol. 17, 2107–2114 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Mellick, R.S. & Cavanagh, J.B. Changes in blood vessel permeability during degeneration and regeneration in peripheral nerves. Brain 91, 141–160 ( 1968).

    Article  CAS  PubMed  Google Scholar 

  19. Chervu, A., Moore, W.S., Homsher, E. & Quinones-Baldrich, W.J. Differential recovery of skeletal muscle and peripheral nerve function after ischemia and reperfusion. J. Surg. Res. 47, 12– 19 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Bentley, F.H. & Schlapp, W. Experiments on the blood supply of nerves. J. Physiol. 102, 62– 71 (1943).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blunt, M.J. Ischemic degeneration of nerve fibers. Arch. Neurol. 2, 528–536 (1960).

    Article  CAS  PubMed  Google Scholar 

  22. Hobson, M.I., Brown, R., Green, C.J. & Terenghi, G. Inter-relationships between angiogenesis and nerve regeneration: a histochemical study. Br. J. Plast. Surg. 50, 125–131 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Takeshita, S. et al. Use of synchrotron radiation microangiography to assess development of small collateral arteries in a rat model of hindlimb ischemia. Circulation 95, 805–808 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Takeshita, S. et al. Endothelium-dependent relaxation of collateral microvessels after intramuscular gene transfer of vascular endothelial growth factor in a rat model of hindlimb ischemia. Circulation 98, 1261–1263 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. White, F.C., Carroll, S.M., Magnet, A. & Bloor, C.M. Coronary collateral development in swine after coronary artery occlusion. Circ. Res. 71, 1490–1500 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Carroll, S.M., White, F.C., Roth, D.M. & Bloor, C.M. Heparin accelerates coronary collateral development in a porcine model of coronary artery occlusion . Circulation 88, 198–207 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Sondell, M., Lundborg, G. & Kanje, M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J. Neurosci. 19, 5731–5740 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sondell, M., Lundborg, G. & Kanje, M. Vascular endothelial growth factor stimulates Schwann cell invasion and neovascularization of acellular nerve grafts. Brain Res. 846, 219–228 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Osborne, W.A. & Vincent, S. The physiologic effects of extracts of nervous tissue. J. Physiol. 25, 283– 294 (1900).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Senger, D.R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).

    Article  CAS  PubMed  Google Scholar 

  31. Couffinhal, T. et al. A mouse model of angiogenesis. Am. J. Pathol. 152, 1667–1679 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439– 442 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Rivard, A. et al. Rescue of diabetes related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am. J. Pathol. 154, 355–364 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Couffinhal, T. et al. Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE-1- Mice. Circulation 99, 3188– 3198 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Van Belle, E. et al. Hypercholesterolemia attenuates angiogenesis but does not preclude augmentation by angiogenic cytokines. Circulation 96, 2667–2674 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Morrissey, T.K., Kleitman, N. & Bunge, R.P. Isolation and functional characterization of schwann cells derived from adult peripheral nerve. J. Neurosci. 11, 2433–2442 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McCarthy, J.B., Palm, S.L. & Furcht, L.T. Migration by haptotaxis of a Schwann cell tumor line to the basement membrane glycoprotein laminin. J. Cell Biol. 97, 772–777 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Zigmond, S.H. & Hirsch, J.G. Leukocyte locomotion and chemotaxis: new methods for evaluation and demonstration of a cell-derived chemotactic factor. J. Exp. Med. 137, 387– 410 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brogi, E. et al. Hypoxia-induced paracrine regulation of VEGF receptor expression . J. Clin. Invest. 97, 469– 476 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spyridopoulos, I., Sullivan, A.B., Kearney, M., Isner, J.M. & Losordo, D.W. Estrogen-receptor-mediated inhibition of human endothelial cell apoptosis. estradiol as a survival factor. Circulation 95, 1505–1514 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Buttke, T.M., McCubrey, J.A. & Owen, T.C. Use of an aqueous soluble tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent cell lines . J. Immunol. Methods 157, 233– 240 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Murohara, T. et al. Role of endothelial nitric oxide synthase in endotehlial cell migration. Arterioscler. Thromb. Vasc. Biol. 19, 1156–1161 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Kearney, M. et al. Histopathology of in-stent restenosis. Circulation 95, 1998–2002 ( 1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by National Institutes of Health grants HL53354, HL57516, HL60911, the E.L. Wiegand Foundation, and the Peter Lewis Foundation. P.S. is the recipient of an Erwin Schroedinger fellowship grant, provided by the Austrian Ministry of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Isner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schratzberger, P., Schratzberger, G., Silver, M. et al. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy . Nat Med 6, 405–413 (2000). https://doi.org/10.1038/74664

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74664

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing