Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The inhibition of pro-apoptotic ICE-like proteases enhances HIV replication

Abstract

Accelerated programmed cell death, or apoptosis, contributes to the CD4+ T-cell depletion characteristic of infection by human immunodeficiency virus (HIV). It has therefore been proposed that limiting apoptosis may represent a therapeutic modality for HIV infection. We found, however, that T leukemia cells or peripheral blood mononuclear cells (PBMCs) exposed to HIV-1 underwent enhanced viral replication in the presence of the cell death inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk). Furthermore, z-VAD-fmk, which targets the pro-apoptotic interleukin-1β-converting enzyme (ICE)-like proteases, stimulated endogenous virus production in activated PBMCs derived from HIV-1-infected asymptomatic individuals. These findings suggest that programmed cell death may serve as a beneficial host mechanism to limit HIV spread and that strategies to inhibit it may have deleterious consequences for the infected host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thompson, C.B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Steller, H. Mechanisms and genes of cellular suicide. Science 267, 1445–1449 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Yuan, J.V. & Horvitz, H.R. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev Biol 138, 33–41 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Henkart, P. ICE Family protease: mediators of all apoptotic cell death? Immunity 4, 195–201 (1996)

    Article  CAS  PubMed  Google Scholar 

  5. Nicholson, D.W. ICE/CED-3-like Proteases as therapeutic targets for the control of inappropriate apoptosis. Nature Biotechnology 14, 297–301 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Fauci, A.S. Multifactorial nature of human immunodeficiency virus disease: Implications for therapy. Science 262, 1011–1018 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Ameisen, J.C. & Capron, A. Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis [see comments]. Immunol Today 12, 102–105 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Ameisen, J.C. From cell activation to cell depletion. The programmed cell death hypothesis of AIDS pathogenesis. Adv Exp Med Biol 374, 139–163 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Finkel, T.H. et al. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat. Med. 1, 129–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Corbeil, J., Tremblay, M. & Richman, D.D. HIV-induced apoptosis requires the CD4 receptor cytoplasmic tail and is accelerated by interaction of CD4 with pS6lck. J Exp Med 183, 39–48 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Meyaard, L. & Miedema, F. Programmed death of T cells in HIV infection: result of immune activation? Curr Top Microbiol Immunol 200, 213–221 (1995).

    CAS  PubMed  Google Scholar 

  12. Martin, S.J., Matear, P.M. & Vyakarnam, A. HIV-1 infection of human CD4+ T cells in vitro: Differential induction of apoptosis in these cells. J Immunol 152, 330–342 (1994).

    CAS  PubMed  Google Scholar 

  13. Terai, C., Kornbluth, R.S., Pauza, C.D., Richman, D.D. & Carson, D.A. Apoptosis as a mechanism of cell death in cultured T lymphoblasts. J Clin Invest 87, 1710–1715 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Laurent-Crawford, A.G. et al. The cytopathic effect of HIV is associated with apoptosis. Virol. 185, 829–839 (1991).

    Article  CAS  Google Scholar 

  15. Estaquier, J. et al. T helper type 1/T helper type 2 cytokines and T cell death: Preventative effect of interleukin 12 on activation-induced and CD95 (FAS/APO-1)-mediated apoptosis of CD4+ T cells from human immunodeficiency virus-infected persons. J Exp Med 182, 1759–1767 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Gougeon, M.L. & Montagnier, L. Apoptosis in AIDS Science 260, 1269–1270 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Ameisen, J.C. Programmed cell death and AIDS: from hypothesis to experiment. Immunol Today 13, 388–391 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Sarin, A., Clerici, M., Blatt, S.P., Hendrix, C.W., Shearer, G.M. & Henkart, P.A. Inhibition of activation-induced programmed cell death and restoration of defective immune responses of HIV+ donors by cysteine protease inhibitors. J. Immunol 153, 862–872 (1994).

    CAS  PubMed  Google Scholar 

  19. Lu, W., Salerno-Goncalvez, R., Yuan, J., Sylvie, D., Han, D.S. & Andrieu, J.M. Glucocorticoids rescue CD4+ T cells from activation-induced apoptosis triggered by HIV-1: implications for pathogenesis and therapy. AIDS 9 (1), 35–42 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, Y., Bailey, J., Vacchio, M.S., Yarchoan, R. & Ashwell, J.D. Retinoic acid inhibition of ex vivo human immunodeficiency virus-associated apoptosis of peripheral blood cells. Proc NatlAcad Sci U S A 92, 3051–3055 (1995).

    Article  CAS  Google Scholar 

  21. Sarin, A., Adams, D.H. & Henkart, P.A. Protease inhibitors selectively block T cell receptor-triggered programmed cell death in a murine T cell hybridoma and activated peripheral T cells. J Exp Med 178, 1693–1700 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Estaquier, J. et al. Programmed cell death and AIDS: significance of T-cell apoptosis in pathogenic and nonpathogenic primate lentiviral infections. Proc Notl Acad Sci U USA 91, 9431–9435 (1994).

    Article  CAS  Google Scholar 

  23. Thomson, A.W. & Bonham, C.A. Inhibition of T lymphocyte activation and apoptotic cell death by cyclosporin A and tacrolimus (FK506): Its relevance to therapy of HIV infection. Adv Exp Med Biol 374, 211–216 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Antoni, B.A., Sabbatini, P., Rabson, A.B. & White, E. Inhibition of apoptosis in human immunodeficiency virus-infected cells enhances virus production and facilitates persistent infection. J Virol 69, 2384–2392 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, Y. & Watson, R.R. Is vitamin E supplementation a useful agent in AIDS therapy? Prog Food Nutr Sci 17, 351–75 (1993).

    CAS  PubMed  Google Scholar 

  26. Malorni, W., Rivabene, R., Santini, M.T. & Donelli, G. N-acetylcysteine inhibits apoptosis and decreases viral particles in HIV-chronically infected U937 cells. FEBS Lett 327, 75–78 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Estaquier, J., Tanaka, M., Suda, T., Nagata, S., Golstein, P. & Ameisen, J.C. Fas-mediated apoptosis of CD4+ and CD8+ T cells from human immunodeficiency virus-infected persons: differential in vitro preventive effect of cytokines and protease antagonists. Blood 87, 4959–4966 (1996).

    CAS  PubMed  Google Scholar 

  28. Pantaleo, G. & Fauci, A.S. Apoptosis in HIV infection [comment]. Nat Med 1, 118–120 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Tewari, M. et al. Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-in-hibitable protease that cleaves the death substrate poly (ADP-ribose) polymerase. Cell 81, 801–809 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Nicholson, D.W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Pronk, C.J., Ramer, K., Amiri, P. & Williams, L.T. Requirement of an ICE-like protease for induction of apoptosis and ceramide generation by REAPER. Science 271, 808–810 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Fearnhead, H.O., Dinsdale, D. & Cohen, G.M. An interleukin-1 beta-converting enzyme-like protease is a common mediator of apoptosis in thymocytes. FCBS Lett 375, 283–288 (1995).

    Article  CAS  Google Scholar 

  33. Rouquet, N., Pages, J.-C., Molina, T., Briand, P. & Joulin, V. ICE inhibitor YVADcmk ia a potent therapeutic agent against in vivo liver apoptosis. Curr. Biol. 6, 1192–1195 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Ray, C.A. et al. Viral Inhibition of Inflammation: Cowpox Virus Encodes an Inhibitor of the Interleukin-1β Converting Enzyme. Cell 69, 597–604 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Jurriaans, S. et al. The natural history of HIV-1 infection: virus load and virus. Virol. 204, 223–233 (1994).

    Article  CAS  Google Scholar 

  36. Frankel, S.S. et al. Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid. Science 272, 115–117 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Martin, S.J. & Green, D.R. Apoptosis during HIV infection. A cytopathic effect of HIV or an important host-defense mechanism against viruses in general? Adv Exp Med Biol 374, 129–138 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Clem, R.J., Fechheimer, M. & Miller, L.K. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254, 1388–1390 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Kamita, S.G., Majima, K. & Maeda, S. Identification and characterization of the p35 gene of Bombyx mori nuclear polyhedrosis virus that prevents virus-induced apoptosis. J Virol 67, 455–463 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Xue, D. & Horvitz, H.R. Inhibition of the Caenorhabditis elegans cell death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 377, 248–251 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Bump, N.J. et al. Inhibition of ICE family proteases by baculovirus anti-apoptotic protein p35. Science 269, 1885–1888 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Thali, M., Bukovsky, A., Kondo, E., Rosenwirth, B., Walsh, C.T., Sodroski, J. & Gottlinger, H.G. Functional association of cyclophilin A with HIV-1 virions. Nature 372, 363–365 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Andrieu, J.M., Lu, W. & Levy, R. Sustained increases in CD4 cell counts in asymptomatic human immunodeficiency virus type 1-seropositive patients treated with prednisolonefor 1 year. J. Infect. Dis. 171 (3) 523–530 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Sandstrom, P.A., Pardi, D., Goldsmith, C.S., Chengying, D., Diamond, A.M. & Folks, T.M. Bcl-2 Expression facilitates human Immunodeficiency virus type-1-mediated cytopathic effects during acute spreading infections. J. Virol. 70, 4617–4622 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Banda, N.K. et al. Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation induced apoptosis. J Exp Med 176, 1099–1106 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Oyaizu, N., McCloskey, T.W., Coronesi, M., Chirmule, N., Kalyanaraman, V.S. & Pahwa, S. Accelerated apoptosis in peripheral blood mononuclear cells (PBMCs). Blood 82, 3392–3400 (1993).

    CAS  PubMed  Google Scholar 

  47. Tewari, M. & Dixit, V.M. Fas- and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J. Biol. Chem. 270, 3255–60 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Chinnaiyan, A.M. et al. FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J. Biol. Chem. 271, 4961–4965 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinnaiyan, A., Woffendin, C., Dixit, V. et al. The inhibition of pro-apoptotic ICE-like proteases enhances HIV replication. Nat Med 3, 333–337 (1997). https://doi.org/10.1038/nm0397-333

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0397-333

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing