Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Autoantigen microarrays for multiplex characterization of autoantibody responses

Abstract

We constructed miniaturized autoantigen arrays to perform large-scale multiplex characterization of autoantibody responses directed against structurally diverse autoantigens, using submicroliter quantities of clinical samples. Autoantigen microarrays were produced by attaching hundreds of proteins, peptides and other biomolecules to the surface of derivatized glass slides using a robotic arrayer. Arrays were incubated with patient serum, and spectrally resolvable fluorescent labels were used to detect autoantibody binding to specific autoantigens on the array. We describe and characterize arrays containing the major autoantigens in eight distinct human autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. This represents the first report of application of such technology to multiple human disease sera, and will enable validated detection of antibodies recognizing autoantigens including proteins, peptides, enzyme complexes, ribonucleoprotein complexes, DNA and post-translationally modified antigens. Autoantigen microarrays represent a powerful tool to study the specificity and pathogenesis of autoantibody responses, and to identify and define relevant autoantigens in human autoimmune diseases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 1152-feature rheumatic disease autoantigen array.
Figure 2: Array validation and sensitivity analysis.
Figure 3: Identification of disease-specific autoantibodies in human serum.
Figure 4: Autoantibody detection is specific.
Figure 5: Antigen arrays for epitope mapping, antibody isotype characterization, and comparative analysis.

References

  1. Steinman, L. A few autoreactive cells in an autoimmune infiltrate control a vast population of nonspecific cells: A tale of smart bombs and the infantry. Proc. Natl. Acad. Sci. USA 93, 2253–2256 (1996).

    Article  CAS  Google Scholar 

  2. von Mühlen, C.A. & Tan, E.M. Autoantibodies in the diagnosis of systemic rheumatic diseases. Semin. Arthritis. Rheum. 24, 323–358 (1995).

    Article  Google Scholar 

  3. Brocke, S. et al. Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature 379, 343–346 (1996).

    Article  CAS  Google Scholar 

  4. Critchfield, J.M. et al. T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263, 1139–1143 (1994).

    Article  CAS  Google Scholar 

  5. Garren, H. et al. Combination of gene delivery and DNA vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway. Immunity 15, 15–22 (2001).

    Article  CAS  Google Scholar 

  6. Ekins, R.P. Multi-analyte immunoassay. J. Pharm. Biomed. Anal. 7, 155–168 (1989).

    Article  CAS  Google Scholar 

  7. Fodor, S.P. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).

    Article  CAS  Google Scholar 

  8. Haab, B.B., Dunham, M.J. & Brown, P.O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, research0004.1–0004.13 (2001).

    Article  Google Scholar 

  9. MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  PubMed  Google Scholar 

  10. Joos, T.O. et al. A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 21, 2641–2650 (2000).

    Article  CAS  Google Scholar 

  11. Robinson, W.H., Steinman, L. & Utz, P.J. Proteomics technologies in the study of autoimmune disease. Arthritis. Rheum. 46, 886–894 (2002).

    Article  Google Scholar 

  12. Utz, P.J., Hottelet, M., Schur, P.H. & Anderson, P. Proteins phosphorylated during stress-induced apoptosis are common targets for autoantibody production in patients with systemic lupus erythematosus. J. Exp. Med. 185, 843–854 (1997).

    Article  CAS  Google Scholar 

  13. Monestier, M., Decker, P., Briand, J.P., Gabriel, J.L. & Muller, S. Molecular and structural properties of three autoimmune IgG monoclonal antibodies to histone H2B. J. Biol. Chem. 275, 13558–13563 (2000).

    Article  CAS  Google Scholar 

  14. Utz, P.J., Gensler, T.J. & Anderson, P. Death, autoantigen modifications, and tolerance. Arthritis Res. 2, 101–114 (2000).

    Article  CAS  Google Scholar 

  15. Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  Google Scholar 

  16. Lu, L., Kaliyaperumal, A., Boumpas, D.T. & Datta, S.K. Major peptide autoepitopes for nucleosome-specific T cells of human lupus. J. Clin. Invest. 104, 345–355 (1999).

    Article  CAS  Google Scholar 

  17. Yeaman, S.J., Kirby, J.A. & Jones, D.E. Autoreactive responses to pyruvate dehydrogenase complex in the pathogenesis of primary biliary cirrhosis. Immunol. Rev. 174, 238–249 (2000).

    Article  CAS  Google Scholar 

  18. Warren, K.G., Catz, I. & Steinman, L. Fine specificity of the antibody response to myelin basic protein in the central nervous system in multiple sclerosis: the minimal B-cell epitope and a model of its features. Proc. Natl. Acad. Sci. USA 92, 11061–11065 (1995).

    Article  CAS  Google Scholar 

  19. Steiner, G. et al. Purification and partial sequencing of the nuclear autoantigen RA33 shows that it is indistinguishable from the A2 protein of the heterogeneous nuclear ribonucleoprotein complex. J. Clin. Invest. 90, 1061–1066 (1992).

    Article  CAS  Google Scholar 

  20. Pruijn, G.J., Simons, F.H. & van Venrooij, W.J. Intracellular localization and nucleocytoplasmic transport of Ro RNP components. Eur. J. Cell. Biol. 74, 123–132 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Chong and D. Mitchell for their outstanding assistance; J.G. Lindsay for antibodies; and A. Abeliovich, H. Garren, P. Ruiz and G. Hermans for insightful discussions. This work was primarily supported by a Howard Hughes Postdoctoral Research Fellowship for Physicians Award, NIH K08 AR02133 and Arthritis Foundation Chapter Grant to W.H.R; NIH/NINDS 5R01NS18235 and NIH U19DK61934 to L.S.; and NIH K08 AI01521, an Arthritis Foundation Investigator Award, a Baxter Foundation Career Development Award, a Stanford University Office of Technology Licensing Award, and NIH U19 DK61934 to P.J.U. P.O.B is an Associate Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, W., DiGennaro, C., Hueber, W. et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat Med 8, 295–301 (2002). https://doi.org/10.1038/nm0302-295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0302-295

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing