Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modular flexibility of dystrophin: Implications for gene therapy of Duchenne muscular dystrophy

Abstract

Attempts to develop gene therapy for Duchenne muscular dystrophy (DMD) have been complicated by the enormous size of the dystrophin gene. We have performed a detailed functional analysis of dystrophin structural domains and show that multiple regions of the protein can be deleted in various combinations to generate highly functional mini- and micro-dystrophins. Studies in transgenic mdx mice, a model for DMD, reveal that a wide variety of functional characteristics of dystrophy are prevented by some of these truncated dystrophins. Muscles expressing the smallest dystrophins are fully protected against damage caused by muscle activity and are not morphologically different from normal muscle. Moreover, injection of adeno-associated viruses carrying micro-dystrophins into dystrophic muscles of immunocompetent mdx mice results in a striking reversal of histopathological features of this disease. These results demonstrate that the dystrophic pathology can be both prevented and reversed by gene therapy using micro-dystrophins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of truncated dystrophins.
Figure 2: Immunofluorescence using dystrophin antisera and H&E staining of 3-mo control and transgenic mdx muscles.
Figure 3: Immunofluorescence using dystrophin antisera and H&E staining of muscles from control and transgenic mdx mice expressing 4-repeat micro-dystrophins.
Figure 4: Physiological analysis of wild-type, mdx and transgenic mdx mice.
Figure 5: Correction of muscular dystrophy via AAV delivered micro-dystrophins.

Similar content being viewed by others

References

  1. Koenig, M. et al. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50, 509–517 (1987).

    Article  CAS  Google Scholar 

  2. Hoffman, E.P., Brown, R.H. Jr & Kunkel, L.M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928 (1987).

    Article  CAS  Google Scholar 

  3. Koenig, M., Monaco, A.P. & Kunkel, L.M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53, 219–226 (1988).

    Article  CAS  Google Scholar 

  4. Ervasti, J.M. & Campbell, K.P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell. Biol. 122, 809–823 (1993).

    Article  CAS  Google Scholar 

  5. Straub, V. & Campbell, K.P. Muscular dystrophies and the dystrophin-glycoprotein complex. Curr. Opin. Neurol. 10, 168–175 (1997).

    Article  CAS  Google Scholar 

  6. Cox, G.A. et al. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 364, 725–729 (1993).

    Article  CAS  Google Scholar 

  7. Phelps, S.F. et al. Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum. Mol. Genet. 4, 1251–1258 (1995).

    Article  CAS  Google Scholar 

  8. Hartigan-O'Connor, D. & Chamberlain, J.S. Developments in gene therapy for muscular dystrophy. Microsc. Res. Tech. 48, 223–238 (2000).

    Article  CAS  Google Scholar 

  9. Fisher, K.J. et al. Recombinant adeno-associated virus for muscle directed gene therapy. Nature Med. 3, 306–312 (1997).

    Article  CAS  Google Scholar 

  10. Snyder, R.O. et al. Efficient and stable adeno-associated virus-mediated transduction in the skeletal muscle of adult immunocompetent mice. Hum. Gene Ther. 8, 1891–1900 (1997).

    Article  CAS  Google Scholar 

  11. Xiao, X., Li, J. & Samulski, R.J. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 70, 8098–8108 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. England, S.B. et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 343, 180–182 (1990).

    Article  CAS  Google Scholar 

  13. Yazaki, M. et al. Clinical characteristics of aged Becker muscular dystrophy patients with onset after 30 years. Eur. Neurol. 42, 145–149 (1999).

    Article  CAS  Google Scholar 

  14. Corrado, K. et al. Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a “mild Becker” phenotype. J. Cell Biol. 134, 873–884 (1996).

    Article  CAS  Google Scholar 

  15. Crawford, G.E. et al. Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J. Cell Biol. 150, 1399–1410 (2000).

    Article  CAS  Google Scholar 

  16. Rafael, J.A. et al. Forced expression of dystrophin deletion constructs reveals structure-function correlations. J. Cell Biol. 134, 93–102 (1996).

    Article  CAS  Google Scholar 

  17. Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292 (1986).

    Article  CAS  Google Scholar 

  18. Hartigan-O'Connor, D., Kirk, C.J., Crawford, R., Mule, J. & Chamberlain, J.S. Immune evasion by muscle specific gene expression in dystrophic muscle. Mol. Ther. 4, 525–533 (2001).

    Article  CAS  Google Scholar 

  19. Hauser, M.A. et al. Analysis of muscle creatine kinase regulatory elements in recombinant adenoviral vectors. Mol. Ther. 2, 16–25 (2000).

    Article  CAS  Google Scholar 

  20. Lynch, G.S., Rafael, J.A., Chamberlain, J.S. & Faulkner, J.A. Contraction-induced injury to single permeabilized muscle fibers from mdx, transgenic mdx, and control mice. Am. J. Physiol. Cell Physiol. 279, C1290–C1294 (2000).

    Article  CAS  Google Scholar 

  21. Petrof, B.J., Shrager, J.B., Stedman, H.H., Kelly, A.M. & Sweeney, H.L. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc. Natl. Acad. Sci. USA 90, 3710–3714 (1993).

    Article  CAS  Google Scholar 

  22. Straub, V., Rafael, J.A., Chamberlain, J.S. & Campbell, K.P. Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J. Cell Biol. 139, 375–385 (1997).

    Article  CAS  Google Scholar 

  23. Cross, R.A., Stewart, M. & Kendrick-Jones, J. Structural predictions for the central domain of dystrophin. FEBS Lett. 262, 87–92 (1990).

    Article  CAS  Google Scholar 

  24. Kahana, E., Marsh, P.J., Henry, A.J., Way, M. & Gratzer, W.B. Conformation and phasing of dystrophin structural repeats. J. Mol. Biol. 235, 1271–1277 (1994).

    Article  CAS  Google Scholar 

  25. Kahana, E. & Gratzer, W.B. Minimum folding unit of dystrophin rod domain. Biochemistry 34, 8110–8114 (1995).

    Article  CAS  Google Scholar 

  26. Byers, T.J., Husain–Chishti, A., Dubreuil, R.R., Branton, D. & Goldstein, L.S. Sequence similarity of the amino-terminal domain of Drosophila β spectrin to α actinin and dystrophin. J. Cell Biol. 109, 1633–1641 (1989).

    Article  CAS  Google Scholar 

  27. Pascual, J., Castresana, J. & Saraste, M. Evolution of the spectrin repeat. Bioessays 19, 811–817 (1997).

    Article  CAS  Google Scholar 

  28. Thomas, G.H. et al. Intragenic duplication and divergence in the spectrin superfamily of proteins. Mol. Biol. Evol. 14, 1285–1295 (1997).

    Article  CAS  Google Scholar 

  29. Wang, B., Li, J. & Xiao, X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc. Natl. Acad. Sci. U S A 97, 13714–13719 (2000).

    Article  CAS  Google Scholar 

  30. Yuasa, K. et al. Effective restoration of dystrophin-associated proteins in vivo by adenovirus-mediated transfer of truncated dystrophin cDNAs. FEBS Lett. 425, 329–336 (1998).

    Article  CAS  Google Scholar 

  31. Emery, A.E.H. Duchenne Muscular Dystrophy. (Oxford Medical Publications, Oxford, 1993).

  32. Greelish, J.P. et al. Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector. Nature Med. 5, 439–443 (1999).

    Article  CAS  Google Scholar 

  33. Jaynes, J.B., Johnson, J.E., Buskin, J.N., Gartside, C.L. & Hauschka, S.D. The muscle creatine kinase gene is regulated by multiple upstream elements, including a muscle-specific enhancer. Mol. Cell Biol. 8, 62–70 (1988).

    Article  CAS  Google Scholar 

  34. Lynch, G.S. et al. Contractile properties of diaphragm muscle segments from old mdx and old transgenic mdx mice. Am. J .Physiol. Cell Physiol. 272, C2063–C2068 (1997).

  35. DelloRusso, C., Crawford, R., Chamberlain, J. & Brooks, S. Tibialis anterior muscles of mdx mice are highly susceptible to contraction-induced injury. J. Mus. Res. Cell Motil. (in the press).

  36. Duan, D., Yue, Y., Yan, Z. & Engelhardt, J.F. A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nature Med. 6, 595–598 (2000).

    Article  CAS  Google Scholar 

  37. Xiao, X., Li, J. & Samulski, R.J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2232 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Grounds and S. Hauschka for helpful discussions; R. Maniker, S. Kellogg and C. Hassett for technical assistance; Y. Yue for production of rAAV micro-dystrophins; the University of Michigan transgenic animal model core; and all members of our laboratory for advice and encouragement. This work was supported by grants from the Muscular Dystrophy Association (to J.S.C., J.F.E. and D.D.) and the National Institutes of Health (to J.S.C., J.F.E. and S.V.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Chamberlain.

Ethics declarations

Competing interests

The former institution of J.S.C., the University of Michigan, has filed for a patent application on the concept of micro-dystrophin cDNAs and their use in therapy. This application is pending.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harper, S., Hauser, M., DelloRusso, C. et al. Modular flexibility of dystrophin: Implications for gene therapy of Duchenne muscular dystrophy. Nat Med 8, 253–261 (2002). https://doi.org/10.1038/nm0302-253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0302-253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing